RetaSy commited on
Commit
c58bbb9
·
verified ·
1 Parent(s): bc12849

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -5
README.md CHANGED
@@ -54,7 +54,7 @@ pretty_name: Quranic Audio Dataset - Crowdsourced and Labeled Recitation from No
54
 
55
  # Dataset Card for Quranic Audio Dataset : Crowdsourced and Labeled Recitation from Non-Arabic Speakers
56
 
57
- ### Dataset Summary
58
 
59
  We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process.
60
  In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets.
@@ -63,17 +63,71 @@ As a result, we have collected around 7000 Quranic recitations from a pool of 12
63
  We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments.
64
 
65
  ## How to use
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
  ## Dataset Structure
68
 
69
  ### Data Instances
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
  ### Data Fields
72
 
73
  ### Citation Information
74
 
75
  ```
76
- @inproceedings{commonvoice:2020,
77
  author = {Salameh, R., Mdfaa, M. A., Askarbekuly, N., & Mazzara, M.},
78
  title = {Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers},
79
  year = 2024,
@@ -81,8 +135,6 @@ We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 betw
81
  eprinttype = {arxiv},
82
  eprintclass = {cs.SD},
83
  url = {https://arxiv.org/abs/2405.02675},
84
- language = {english},
85
- booktitle = {},
86
- pages = {}
87
  }
88
  ```
 
54
 
55
  # Dataset Card for Quranic Audio Dataset : Crowdsourced and Labeled Recitation from Non-Arabic Speakers
56
 
57
+ ## Dataset Summary
58
 
59
  We explore the possibility of crowdsourcing a carefully annotated Quranic dataset, on top of which AI models can be built to simplify the learning process.
60
  In particular, we use the volunteer-based crowdsourcing genre and implement a crowdsourcing API to gather audio assets.
 
63
  We have achieved a crowd accuracy of 0.77, an inter-rater agreement of 0.63 between the annotators, and 0.89 between the labels assigned by the algorithm and the expert judgments.
64
 
65
  ## How to use
66
+ The dataset can be downloaded using the `load_dataset` function from `datasets` library.
67
+
68
+ ```python
69
+ !pip install datasets
70
+ ```
71
+
72
+ ```python
73
+ from datasets import load_dataset
74
+
75
+ quranic_dataset = load_dataset("RetaSy/quranic_audio_dataset")
76
+
77
+ print(quranic_dataset)
78
+ ```
79
 
80
  ## Dataset Structure
81
 
82
  ### Data Instances
83
+ ```python
84
+ {
85
+ 'audio': {
86
+ 'path': '0058a4f7-6a3a-4665-b43b-d6f67fd14dbf.wav',
87
+ 'array': array([0.00000000e+00, 0.00000000e+00, 3.05175781e-05, ...,9.15527344e-05, 0.00000000e+00, 1.83105469e-04]),
88
+ 'sampling_rate': 16000
89
+ },
90
+ 'Surah': 'Al-Faatihah',
91
+ 'Aya': 'أَعُوذُ بِاللَّهِ مِنَ الشَّيْطَانِ الرَّجِيْمِ',
92
+ 'duration_ms': 3520,
93
+ 'create_date': '2023-03-15T19:57:35.027430+03:00',
94
+ 'golden': False,
95
+ 'final_label': 'in_correct',
96
+ 'reciter_id': 'ef1ada15-e225-4155-a81c-fc461d940a6d',
97
+ 'reciter_country': 'AT',
98
+ 'reciter_gender': 'female',
99
+ 'reciter_age': 'Unknown',
100
+ 'reciter_qiraah': 'hafs',
101
+ 'judgments_num': 3,
102
+ 'annotation_metadata': '{
103
+ "label_1": "in_correct",
104
+ "annotator1_id": "1",
105
+ "annotator1_SCT": "257",
106
+ "annotator1_MCC": "0.87",
107
+ "annotator1_ACC": "0.92",
108
+ "annotator1_F1": "0.91",
109
+ "label_2": "correct",
110
+ "annotator2_id": "10",
111
+ "annotator2_SCT": "21",
112
+ "annotator2_MCC": "0.52",
113
+ "annotator2_ACC": "0.57",
114
+ "annotator2_F1": "0.55",
115
+ "label_3": "in_correct",
116
+ "annotator3_id": "19",
117
+ "annotator3_SCT": "12",
118
+ "annotator3_MCC": "0.75",
119
+ "annotator3_ACC": "0.83",
120
+ "annotator3_F1": "0.78"
121
+ }'
122
+ }
123
+ ```
124
 
125
  ### Data Fields
126
 
127
  ### Citation Information
128
 
129
  ```
130
+ @inproceedings{quran_audio_dataset:2024,
131
  author = {Salameh, R., Mdfaa, M. A., Askarbekuly, N., & Mazzara, M.},
132
  title = {Quranic Audio Dataset: Crowdsourced and Labeled Recitation from Non-Arabic Speakers},
133
  year = 2024,
 
135
  eprinttype = {arxiv},
136
  eprintclass = {cs.SD},
137
  url = {https://arxiv.org/abs/2405.02675},
138
+ language = {english}
 
 
139
  }
140
  ```