Ricecake123 commited on
Commit
64e26e0
1 Parent(s): e10fe71

Upload slicer2.py

Browse files
Files changed (1) hide show
  1. slicer2.py +186 -0
slicer2.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ # This function is obtained from librosa.
5
+ def get_rms(
6
+ y,
7
+ *,
8
+ frame_length=2048,
9
+ hop_length=512,
10
+ pad_mode="constant",
11
+ ):
12
+ padding = (int(frame_length // 2), int(frame_length // 2))
13
+ y = np.pad(y, padding, mode=pad_mode)
14
+
15
+ axis = -1
16
+ # put our new within-frame axis at the end for now
17
+ out_strides = y.strides + tuple([y.strides[axis]])
18
+ # Reduce the shape on the framing axis
19
+ x_shape_trimmed = list(y.shape)
20
+ x_shape_trimmed[axis] -= frame_length - 1
21
+ out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
22
+ xw = np.lib.stride_tricks.as_strided(
23
+ y, shape=out_shape, strides=out_strides
24
+ )
25
+ if axis < 0:
26
+ target_axis = axis - 1
27
+ else:
28
+ target_axis = axis + 1
29
+ xw = np.moveaxis(xw, -1, target_axis)
30
+ # Downsample along the target axis
31
+ slices = [slice(None)] * xw.ndim
32
+ slices[axis] = slice(0, None, hop_length)
33
+ x = xw[tuple(slices)]
34
+
35
+ # Calculate power
36
+ power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
37
+
38
+ return np.sqrt(power)
39
+
40
+
41
+ class Slicer:
42
+ def __init__(self,
43
+ sr: int,
44
+ threshold: float = -40.,
45
+ min_length: int = 5000,
46
+ min_interval: int = 300,
47
+ hop_size: int = 20,
48
+ max_sil_kept: int = 5000):
49
+ if not min_length >= min_interval >= hop_size:
50
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
51
+ if not max_sil_kept >= hop_size:
52
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
53
+ min_interval = sr * min_interval / 1000
54
+ self.threshold = 10 ** (threshold / 20.)
55
+ self.hop_size = round(sr * hop_size / 1000)
56
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
57
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
58
+ self.min_interval = round(min_interval / self.hop_size)
59
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
60
+
61
+ def _apply_slice(self, waveform, begin, end):
62
+ if len(waveform.shape) > 1:
63
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
64
+ else:
65
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
66
+
67
+ # @timeit
68
+ def slice(self, waveform):
69
+ if len(waveform.shape) > 1:
70
+ samples = waveform.mean(axis=0)
71
+ else:
72
+ samples = waveform
73
+ if (samples.shape[0] + self.hop_size - 1) // self.hop_size <= self.min_length:
74
+ return [waveform]
75
+ rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
76
+ sil_tags = []
77
+ silence_start = None
78
+ clip_start = 0
79
+ for i, rms in enumerate(rms_list):
80
+ # Keep looping while frame is silent.
81
+ if rms < self.threshold:
82
+ # Record start of silent frames.
83
+ if silence_start is None:
84
+ silence_start = i
85
+ continue
86
+ # Keep looping while frame is not silent and silence start has not been recorded.
87
+ if silence_start is None:
88
+ continue
89
+ # Clear recorded silence start if interval is not enough or clip is too short
90
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
91
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
92
+ if not is_leading_silence and not need_slice_middle:
93
+ silence_start = None
94
+ continue
95
+ # Need slicing. Record the range of silent frames to be removed.
96
+ if i - silence_start <= self.max_sil_kept:
97
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
98
+ if silence_start == 0:
99
+ sil_tags.append((0, pos))
100
+ else:
101
+ sil_tags.append((pos, pos))
102
+ clip_start = pos
103
+ elif i - silence_start <= self.max_sil_kept * 2:
104
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
105
+ pos += i - self.max_sil_kept
106
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
107
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
108
+ if silence_start == 0:
109
+ sil_tags.append((0, pos_r))
110
+ clip_start = pos_r
111
+ else:
112
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
113
+ clip_start = max(pos_r, pos)
114
+ else:
115
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
116
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
117
+ if silence_start == 0:
118
+ sil_tags.append((0, pos_r))
119
+ else:
120
+ sil_tags.append((pos_l, pos_r))
121
+ clip_start = pos_r
122
+ silence_start = None
123
+ # Deal with trailing silence.
124
+ total_frames = rms_list.shape[0]
125
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
126
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
127
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
128
+ sil_tags.append((pos, total_frames + 1))
129
+ # Apply and return slices.
130
+ if len(sil_tags) == 0:
131
+ return [waveform]
132
+ else:
133
+ chunks = []
134
+ if sil_tags[0][0] > 0:
135
+ chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
136
+ for i in range(len(sil_tags) - 1):
137
+ chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
138
+ if sil_tags[-1][1] < total_frames:
139
+ chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
140
+ return chunks
141
+
142
+
143
+ def main():
144
+ import os.path
145
+ from argparse import ArgumentParser
146
+
147
+ import librosa
148
+ import soundfile
149
+
150
+ parser = ArgumentParser()
151
+ parser.add_argument('audio', type=str, help='The audio to be sliced')
152
+ parser.add_argument('--out', type=str, help='Output directory of the sliced audio clips')
153
+ parser.add_argument('--db_thresh', type=float, required=False, default=-40,
154
+ help='The dB threshold for silence detection')
155
+ parser.add_argument('--min_length', type=int, required=False, default=5000,
156
+ help='The minimum milliseconds required for each sliced audio clip')
157
+ parser.add_argument('--min_interval', type=int, required=False, default=300,
158
+ help='The minimum milliseconds for a silence part to be sliced')
159
+ parser.add_argument('--hop_size', type=int, required=False, default=10,
160
+ help='Frame length in milliseconds')
161
+ parser.add_argument('--max_sil_kept', type=int, required=False, default=500,
162
+ help='The maximum silence length kept around the sliced clip, presented in milliseconds')
163
+ args = parser.parse_args()
164
+ out = args.out
165
+ if out is None:
166
+ out = os.path.dirname(os.path.abspath(args.audio))
167
+ audio, sr = librosa.load(args.audio, sr=None, mono=False)
168
+ slicer = Slicer(
169
+ sr=sr,
170
+ threshold=args.db_thresh,
171
+ min_length=args.min_length,
172
+ min_interval=args.min_interval,
173
+ hop_size=args.hop_size,
174
+ max_sil_kept=args.max_sil_kept
175
+ )
176
+ chunks = slicer.slice(audio)
177
+ if not os.path.exists(out):
178
+ os.makedirs(out)
179
+ for i, chunk in enumerate(chunks):
180
+ if len(chunk.shape) > 1:
181
+ chunk = chunk.T
182
+ soundfile.write(os.path.join(out, f'%s_%d.wav' % (os.path.basename(args.audio).rsplit('.', maxsplit=1)[0], i)), chunk, sr)
183
+
184
+
185
+ if __name__ == '__main__':
186
+ main()