Upload folder using huggingface_hub
Browse files
data/images/gota_hovratt_seg_images_1.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a637136606a5cee4444c740b93532cfc36d72940946dac134226e98fb6a33e3
|
3 |
+
size 31154588
|
data/images/gota_hovratt_seg_images_2.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e0e7c2a833c71fee0c23cf516b1f24182d8944ebb3839e0aafcaa2a2488b594
|
3 |
+
size 32800277
|
data/page_xmls/gota_hovratt_seg_page_xmls_1.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5694aaa69919191f4a558dde5a39d2c909548105a0f7e1d64e5ca6a7e2366a33
|
3 |
+
size 396053
|
data/page_xmls/gota_hovratt_seg_page_xmls_2.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83bd7462eae5efbb55673fd947ea7586fd7b4d4f84d950b1cb319eba9bd4334c
|
3 |
+
size 438574
|
gota_hovratt_seg.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
import xml.etree.ElementTree as ET
|
4 |
+
from glob import glob
|
5 |
+
from pathlib import Path, PurePath
|
6 |
+
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
+
from datasets import (
|
10 |
+
BuilderConfig,
|
11 |
+
DatasetInfo,
|
12 |
+
Features,
|
13 |
+
GeneratorBasedBuilder,
|
14 |
+
Image,
|
15 |
+
Sequence,
|
16 |
+
Split,
|
17 |
+
SplitGenerator,
|
18 |
+
Value,
|
19 |
+
)
|
20 |
+
from PIL import Image as PILImage
|
21 |
+
from shapely.geometry import Polygon
|
22 |
+
|
23 |
+
|
24 |
+
class HTRDatasetConfig(BuilderConfig):
|
25 |
+
"""Configuration for each dataset variant."""
|
26 |
+
|
27 |
+
def __init__(self, name, description, process_func, features, **kwargs):
|
28 |
+
super().__init__(name=name, description=description, **kwargs)
|
29 |
+
self.process_func = process_func
|
30 |
+
self.features = features
|
31 |
+
|
32 |
+
|
33 |
+
class HTRDataset(GeneratorBasedBuilder):
|
34 |
+
# Define feature structures for each dataset type
|
35 |
+
text_recognition_features = Features(
|
36 |
+
{
|
37 |
+
"image": Image(),
|
38 |
+
"transcription": Value("string"),
|
39 |
+
}
|
40 |
+
)
|
41 |
+
|
42 |
+
segmentation_features = Features(
|
43 |
+
{
|
44 |
+
"image_name": Value("string"),
|
45 |
+
"image": Image(),
|
46 |
+
"annotations": Sequence(
|
47 |
+
{
|
48 |
+
"polygon": Sequence(Sequence(Value("float32"))),
|
49 |
+
"transcription": Value("string"),
|
50 |
+
"class": Value("string"),
|
51 |
+
}
|
52 |
+
),
|
53 |
+
}
|
54 |
+
)
|
55 |
+
|
56 |
+
BUILDER_CONFIGS = [
|
57 |
+
HTRDatasetConfig(
|
58 |
+
name="text_recognition",
|
59 |
+
description="textline dataset for text recognition of historical Swedish",
|
60 |
+
process_func="text_recognition",
|
61 |
+
features=text_recognition_features,
|
62 |
+
),
|
63 |
+
HTRDatasetConfig(
|
64 |
+
name="inst_seg_lines_within_regions",
|
65 |
+
description="Cropped text region images with text line annotations",
|
66 |
+
process_func="inst_seg_lines_within_regions",
|
67 |
+
features=segmentation_features,
|
68 |
+
),
|
69 |
+
HTRDatasetConfig(
|
70 |
+
name="inst_seg_regions_and_lines",
|
71 |
+
description="Original images with both region and line annotations",
|
72 |
+
process_func="inst_seg_regions_and_lines",
|
73 |
+
features=segmentation_features,
|
74 |
+
),
|
75 |
+
HTRDatasetConfig(
|
76 |
+
name="inst_seg_lines",
|
77 |
+
description="Original images with text line annotations only",
|
78 |
+
process_func="inst_seg_lines",
|
79 |
+
features=segmentation_features,
|
80 |
+
),
|
81 |
+
HTRDatasetConfig(
|
82 |
+
name="inst_seg_regions",
|
83 |
+
description="Original images with text region annotations only",
|
84 |
+
process_func="inst_seg_regions",
|
85 |
+
features=segmentation_features,
|
86 |
+
),
|
87 |
+
]
|
88 |
+
|
89 |
+
def _info(self):
|
90 |
+
return DatasetInfo(features=self.config.features)
|
91 |
+
|
92 |
+
def _split_generators(self, dl_manager):
|
93 |
+
# Define URLs for images and XMLs
|
94 |
+
"""
|
95 |
+
images_url = [
|
96 |
+
f"https://huggingface.co/datasets/Riksarkivet/ra_enstaka_sidor/resolve/main/data/images/ra_enstaka_sidor_images_{i}.tar.gz"
|
97 |
+
for i in range(1, 3)
|
98 |
+
]
|
99 |
+
xmls_url = [
|
100 |
+
f"https://huggingface.co/datasets/Riksarkivet/ra_enstaka_sidor/resolve/main/data/page_xmls/ra_enstaka_sidor_page_xmls_{i}.tar.gz"
|
101 |
+
for i in range(1, 3)
|
102 |
+
]
|
103 |
+
|
104 |
+
"""
|
105 |
+
|
106 |
+
images = dl_manager.download_and_extract(
|
107 |
+
[
|
108 |
+
f"https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg/resolve/main/data/images/gota_hovratt_seg_images_{i}.tar.gz"
|
109 |
+
for i in range(1, 3)
|
110 |
+
]
|
111 |
+
)
|
112 |
+
xmls = dl_manager.download_and_extract(
|
113 |
+
[
|
114 |
+
f"https://huggingface.co/datasets/Riksarkivet/gota_hovratt_seg/resolve/main/data/page_xmls/gota_hovratt_seg_page_xmls_{i}.tar.gz"
|
115 |
+
for i in range(1, 3)
|
116 |
+
]
|
117 |
+
)
|
118 |
+
|
119 |
+
# Download and extract images and XMLs
|
120 |
+
# images = dl_manager.download_and_extract(images_url)
|
121 |
+
# xmls = dl_manager.download_and_extract(xmls_url)
|
122 |
+
|
123 |
+
# Define supported image file extensions
|
124 |
+
image_extensions = [
|
125 |
+
"*.jpg",
|
126 |
+
"*.jpeg",
|
127 |
+
"*.png",
|
128 |
+
"*.gif",
|
129 |
+
"*.bmp",
|
130 |
+
"*.tif",
|
131 |
+
"*.tiff",
|
132 |
+
"*.JPG",
|
133 |
+
"*.JPEG",
|
134 |
+
"*.PNG",
|
135 |
+
"*.GIF",
|
136 |
+
"*.BMP",
|
137 |
+
"*.TIF",
|
138 |
+
"*.TIFF",
|
139 |
+
]
|
140 |
+
|
141 |
+
# Collect and sort image and XML file paths
|
142 |
+
imgs_flat = self._collect_file_paths(images, image_extensions)
|
143 |
+
xmls_flat = self._collect_file_paths(xmls, ["*.xml"])
|
144 |
+
|
145 |
+
# Ensure the number of images matches the number of XML files
|
146 |
+
assert len(imgs_flat) == len(xmls_flat)
|
147 |
+
|
148 |
+
# Pair images and XML files
|
149 |
+
imgs_xmls = list(
|
150 |
+
zip(sorted(imgs_flat, key=lambda x: Path(x).stem), sorted(xmls_flat, key=lambda x: Path(x).stem))
|
151 |
+
)
|
152 |
+
|
153 |
+
return [
|
154 |
+
SplitGenerator(
|
155 |
+
name=Split.TRAIN,
|
156 |
+
gen_kwargs={"imgs_xmls": imgs_xmls},
|
157 |
+
)
|
158 |
+
]
|
159 |
+
|
160 |
+
def _collect_file_paths(self, folders, extensions):
|
161 |
+
"""Collects file paths recursively from specified folders."""
|
162 |
+
files_nested = [
|
163 |
+
glob(os.path.join(folder, "**", ext), recursive=True) for ext in extensions for folder in folders
|
164 |
+
]
|
165 |
+
return [file for sublist in files_nested for file in sublist]
|
166 |
+
|
167 |
+
def _generate_examples(self, imgs_xmls):
|
168 |
+
process_func = getattr(self, self.config.process_func)
|
169 |
+
return process_func(imgs_xmls)
|
170 |
+
|
171 |
+
def text_recognition(self, imgs_xmls):
|
172 |
+
"""Process for line dataset with cropped images and transcriptions."""
|
173 |
+
for img, xml in imgs_xmls:
|
174 |
+
img_filename, volume = self._extract_filename_and_volume(img, xml)
|
175 |
+
lines_data = self.parse_pagexml(xml)
|
176 |
+
image_array = cv2.imread(img)
|
177 |
+
|
178 |
+
for i, line in enumerate(lines_data):
|
179 |
+
line_id = str(i).zfill(4)
|
180 |
+
cropped_image = self.crop_line_image(image_array, line["coords"])
|
181 |
+
transcription = line["transcription"]
|
182 |
+
|
183 |
+
if not transcription:
|
184 |
+
print(f"Invalid transcription: {transcription}")
|
185 |
+
continue
|
186 |
+
|
187 |
+
unique_key = f"{volume}_{img_filename}_{line_id}"
|
188 |
+
yield unique_key, {"image": cropped_image, "transcription": transcription}
|
189 |
+
|
190 |
+
def inst_seg_lines_within_regions(self, imgs_xmls):
|
191 |
+
"""Process for cropped images with text line annotations."""
|
192 |
+
for img_path, xml_path in imgs_xmls:
|
193 |
+
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
|
194 |
+
image = PILImage.open(img_path)
|
195 |
+
root = self._parse_xml(xml_path)
|
196 |
+
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
|
197 |
+
|
198 |
+
# Iterate through each TextRegion
|
199 |
+
for reg_ind, region in enumerate(root.findall(".//ns:TextRegion", namespaces=namespaces)):
|
200 |
+
reg_id = str(reg_ind).zfill(4)
|
201 |
+
region_polygon = self._get_polygon(region, namespaces)
|
202 |
+
min_x, min_y, max_x, max_y = self._get_bbox(region_polygon)
|
203 |
+
cropped_region_image = self.crop_image(image, region_polygon)
|
204 |
+
|
205 |
+
annotations = self._get_line_annotations_within_region(
|
206 |
+
region, namespaces, min_x, min_y, region_polygon
|
207 |
+
)
|
208 |
+
|
209 |
+
unique_key = f"{volume}_{img_filename}_{reg_id}"
|
210 |
+
try:
|
211 |
+
yield (
|
212 |
+
unique_key,
|
213 |
+
{
|
214 |
+
"image": {"bytes": self._image_to_bytes(cropped_region_image)},
|
215 |
+
"annotations": annotations,
|
216 |
+
"image_name": unique_key,
|
217 |
+
},
|
218 |
+
)
|
219 |
+
except:
|
220 |
+
print("still error")
|
221 |
+
continue
|
222 |
+
|
223 |
+
def inst_seg_regions_and_lines(self, imgs_xmls):
|
224 |
+
"""Process for original images with both region and line annotations."""
|
225 |
+
for img_path, xml_path in imgs_xmls:
|
226 |
+
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
|
227 |
+
image = PILImage.open(img_path)
|
228 |
+
root = self._parse_xml(xml_path)
|
229 |
+
annotations = self._get_region_and_line_annotations(root)
|
230 |
+
|
231 |
+
unique_key = f"{volume}_{img_filename}"
|
232 |
+
yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations}
|
233 |
+
|
234 |
+
def inst_seg_lines(self, imgs_xmls):
|
235 |
+
"""Process for original images with text line annotations only."""
|
236 |
+
for img_path, xml_path in imgs_xmls:
|
237 |
+
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
|
238 |
+
image = PILImage.open(img_path)
|
239 |
+
root = self._parse_xml(xml_path)
|
240 |
+
|
241 |
+
annotations = self._get_line_annotations(root)
|
242 |
+
|
243 |
+
unique_key = f"{volume}_{img_filename}"
|
244 |
+
yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations}
|
245 |
+
|
246 |
+
def inst_seg_regions(self, imgs_xmls):
|
247 |
+
"""Process for original images with text region annotations only."""
|
248 |
+
for img_path, xml_path in imgs_xmls:
|
249 |
+
img_filename, volume = self._extract_filename_and_volume(img_path, xml_path)
|
250 |
+
image = PILImage.open(img_path)
|
251 |
+
root = self._parse_xml(xml_path)
|
252 |
+
|
253 |
+
annotations = self._get_region_annotations(root)
|
254 |
+
|
255 |
+
unique_key = f"{volume}_{img_filename}"
|
256 |
+
yield unique_key, {"image_name": unique_key, "image": image, "annotations": annotations}
|
257 |
+
|
258 |
+
def _extract_filename_and_volume(self, img, xml):
|
259 |
+
"""Extracts the filename and volume from the image and XML paths."""
|
260 |
+
assert Path(img).stem == Path(xml).stem
|
261 |
+
img_filename = Path(img).stem
|
262 |
+
volume = PurePath(img).parts[-2]
|
263 |
+
return img_filename, volume
|
264 |
+
|
265 |
+
def _parse_xml(self, xml_path):
|
266 |
+
"""Parses the XML file and returns the root element."""
|
267 |
+
try:
|
268 |
+
tree = ET.parse(xml_path)
|
269 |
+
return tree.getroot()
|
270 |
+
except ET.ParseError as e:
|
271 |
+
print(f"XML Parse Error: {e}")
|
272 |
+
return None
|
273 |
+
|
274 |
+
def _get_line_annotations_within_region(self, region, namespaces, min_x, min_y, region_polygon):
|
275 |
+
"""Generates annotations for text lines within a region."""
|
276 |
+
annotations = []
|
277 |
+
for line in region.findall(".//ns:TextLine", namespaces=namespaces):
|
278 |
+
line_polygon = self._get_polygon(line, namespaces)
|
279 |
+
clipped_line_polygon = self.clip_polygon_to_region(line_polygon, region_polygon)
|
280 |
+
|
281 |
+
if len(clipped_line_polygon) < 3:
|
282 |
+
print(f"Invalid polygon detected for line: {line_polygon}, clipped: {clipped_line_polygon}")
|
283 |
+
continue
|
284 |
+
|
285 |
+
translated_polygon = [(x - min_x, y - min_y) for x, y in clipped_line_polygon]
|
286 |
+
transcription = "".join(line.itertext()).strip()
|
287 |
+
|
288 |
+
annotations.append(
|
289 |
+
{
|
290 |
+
"polygon": translated_polygon,
|
291 |
+
"transcription": transcription,
|
292 |
+
"class": "textline",
|
293 |
+
}
|
294 |
+
)
|
295 |
+
return annotations
|
296 |
+
|
297 |
+
def _get_region_and_line_annotations(self, root):
|
298 |
+
"""Generates annotations for both text regions and lines."""
|
299 |
+
annotations = []
|
300 |
+
|
301 |
+
# Get region annotations
|
302 |
+
annotations.extend(self._get_region_annotations(root))
|
303 |
+
|
304 |
+
# Get line annotations
|
305 |
+
annotations.extend(self._get_line_annotations(root))
|
306 |
+
|
307 |
+
return annotations
|
308 |
+
|
309 |
+
def _get_line_annotations(self, root):
|
310 |
+
"""Generates annotations for text lines only."""
|
311 |
+
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
|
312 |
+
annotations = []
|
313 |
+
for region in root.findall(".//ns:TextRegion", namespaces=namespaces):
|
314 |
+
for line in region.findall(".//ns:TextLine", namespaces=namespaces):
|
315 |
+
line_polygon = self._get_polygon(line, namespaces)
|
316 |
+
transcription = "".join(line.itertext()).strip()
|
317 |
+
annotations.append(
|
318 |
+
{
|
319 |
+
"polygon": line_polygon,
|
320 |
+
"transcription": transcription,
|
321 |
+
"class": "textline",
|
322 |
+
}
|
323 |
+
)
|
324 |
+
return annotations
|
325 |
+
|
326 |
+
def _get_region_annotations(self, root):
|
327 |
+
"""Generates annotations for text regions only."""
|
328 |
+
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
|
329 |
+
annotations = []
|
330 |
+
for region in root.findall(".//ns:TextRegion", namespaces=namespaces):
|
331 |
+
region_polygon = self._get_polygon(region, namespaces)
|
332 |
+
annotations.append(
|
333 |
+
{
|
334 |
+
"polygon": region_polygon,
|
335 |
+
"transcription": "",
|
336 |
+
"class": "textregion",
|
337 |
+
}
|
338 |
+
)
|
339 |
+
return annotations
|
340 |
+
|
341 |
+
def _image_to_bytes(self, image):
|
342 |
+
"""Converts a PIL image to bytes."""
|
343 |
+
with io.BytesIO() as output:
|
344 |
+
image.save(output, format="PNG")
|
345 |
+
return output.getvalue()
|
346 |
+
|
347 |
+
def crop_image(self, img_pil, coords):
|
348 |
+
coords = np.array(coords)
|
349 |
+
img = np.array(img_pil)
|
350 |
+
mask = np.zeros(img.shape[0:2], dtype=np.uint8)
|
351 |
+
|
352 |
+
try:
|
353 |
+
# Ensure the coordinates are within the bounds of the image
|
354 |
+
coords[:, 0] = np.clip(coords[:, 0], 0, img.shape[1] - 1)
|
355 |
+
coords[:, 1] = np.clip(coords[:, 1], 0, img.shape[0] - 1)
|
356 |
+
|
357 |
+
# Draw the mask
|
358 |
+
cv2.drawContours(mask, [coords], -1, (255, 255, 255), -1, cv2.LINE_AA)
|
359 |
+
|
360 |
+
# Apply mask to image
|
361 |
+
res = cv2.bitwise_and(img, img, mask=mask)
|
362 |
+
rect = cv2.boundingRect(coords)
|
363 |
+
|
364 |
+
# Ensure the bounding box is within the image dimensions
|
365 |
+
rect = (
|
366 |
+
max(0, rect[0]),
|
367 |
+
max(0, rect[1]),
|
368 |
+
min(rect[2], img.shape[1] - rect[0]),
|
369 |
+
min(rect[3], img.shape[0] - rect[1]),
|
370 |
+
)
|
371 |
+
|
372 |
+
wbg = np.ones_like(img, np.uint8) * 255
|
373 |
+
cv2.bitwise_not(wbg, wbg, mask=mask)
|
374 |
+
|
375 |
+
# Overlap the resulted cropped image on the white background
|
376 |
+
dst = wbg + res
|
377 |
+
|
378 |
+
# Use validated rect for cropping
|
379 |
+
cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]]
|
380 |
+
|
381 |
+
# Convert the NumPy array back to a PIL image
|
382 |
+
cropped_pil = PILImage.fromarray(cropped)
|
383 |
+
|
384 |
+
return cropped_pil
|
385 |
+
|
386 |
+
except Exception as e:
|
387 |
+
print(f"Error in cropping: {e}")
|
388 |
+
return img_pil # Return the original image if there's an error
|
389 |
+
|
390 |
+
def _create_mask(self, shape, coords):
|
391 |
+
"""Creates a mask for the specified polygon coordinates."""
|
392 |
+
mask = np.zeros(shape, dtype=np.uint8)
|
393 |
+
cv2.drawContours(mask, [np.array(coords)], -1, (255, 255, 255), -1, cv2.LINE_AA)
|
394 |
+
return mask
|
395 |
+
|
396 |
+
def parse_pagexml(self, xml):
|
397 |
+
"""Parses the PAGE XML and extracts line data."""
|
398 |
+
root = self._parse_xml(xml)
|
399 |
+
if not root:
|
400 |
+
return []
|
401 |
+
|
402 |
+
namespaces = {"ns": "http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15"}
|
403 |
+
lines_data = []
|
404 |
+
for region in root.findall(".//ns:TextRegion", namespaces):
|
405 |
+
for line in region.findall(".//ns:TextLine", namespaces):
|
406 |
+
try:
|
407 |
+
line_id = line.get("id")
|
408 |
+
coords = self._get_polygon(line, namespaces)
|
409 |
+
transcription = line.find("ns:TextEquiv/ns:Unicode", namespaces).text or ""
|
410 |
+
lines_data.append({"line_id": line_id, "coords": coords, "transcription": transcription})
|
411 |
+
except Exception as e:
|
412 |
+
print(f"Error parsing line: {e}")
|
413 |
+
return lines_data
|
414 |
+
|
415 |
+
def crop_line_image(self, img, coords):
|
416 |
+
"""Crops a line image based on the provided coordinates."""
|
417 |
+
mask = self._create_mask(img.shape[:2], coords)
|
418 |
+
|
419 |
+
coords = np.array(coords)
|
420 |
+
|
421 |
+
# Apply mask to image
|
422 |
+
res = cv2.bitwise_and(img, img, mask=mask)
|
423 |
+
rect = cv2.boundingRect(coords)
|
424 |
+
|
425 |
+
# Create a white background and overlay the cropped image
|
426 |
+
wbg = np.ones_like(img, np.uint8) * 255
|
427 |
+
cv2.bitwise_not(wbg, wbg, mask=mask)
|
428 |
+
dst = wbg + res
|
429 |
+
|
430 |
+
cropped = dst[rect[1] : rect[1] + rect[3], rect[0] : rect[0] + rect[2]]
|
431 |
+
|
432 |
+
return self.cv2_to_pil(cropped)
|
433 |
+
|
434 |
+
def _get_polygon(self, element, namespaces):
|
435 |
+
"""Extracts polygon points from a PAGE XML element."""
|
436 |
+
coords = element.find(".//ns:Coords", namespaces=namespaces).attrib["points"]
|
437 |
+
return [tuple(map(int, p.split(","))) for p in coords.split()]
|
438 |
+
|
439 |
+
def _get_bbox(self, polygon):
|
440 |
+
"""Calculates the bounding box from polygon points."""
|
441 |
+
min_x = min(p[0] for p in polygon)
|
442 |
+
min_y = min(p[1] for p in polygon)
|
443 |
+
max_x = max(p[0] for p in polygon)
|
444 |
+
max_y = max(p[1] for p in polygon)
|
445 |
+
return min_x, min_y, max_x, max_y
|
446 |
+
|
447 |
+
def clip_polygon_to_region(self, line_polygon, region_polygon):
|
448 |
+
"""
|
449 |
+
Clips a line polygon to ensure it's inside the region polygon using Shapely.
|
450 |
+
Returns the original line polygon if the intersection is empty.
|
451 |
+
"""
|
452 |
+
# Convert lists of points to Shapely Polygons
|
453 |
+
line_poly = Polygon(line_polygon)
|
454 |
+
region_poly = Polygon(region_polygon)
|
455 |
+
|
456 |
+
# Compute the intersection of the line polygon with the region polygon
|
457 |
+
try:
|
458 |
+
intersection = line_poly.intersection(region_poly)
|
459 |
+
except Exception:
|
460 |
+
return line_polygon
|
461 |
+
|
462 |
+
# Return the intersection points as a list of tuples
|
463 |
+
if intersection.is_empty:
|
464 |
+
print(
|
465 |
+
f"No intersection found for line_polygon {line_polygon} within region_polygon {region_polygon}, returning original polygon."
|
466 |
+
)
|
467 |
+
return line_polygon
|
468 |
+
elif intersection.geom_type == "Polygon":
|
469 |
+
return list(intersection.exterior.coords)
|
470 |
+
elif intersection.geom_type == "MultiPolygon":
|
471 |
+
# If the result is a MultiPolygon, take the largest by area (or another heuristic)
|
472 |
+
largest_polygon = max(intersection, key=lambda p: p.area)
|
473 |
+
return list(largest_polygon.exterior.coords)
|
474 |
+
elif intersection.geom_type == "LineString":
|
475 |
+
return list(intersection.coords)
|
476 |
+
else:
|
477 |
+
print(f"Unexpected intersection type: {intersection.geom_type}")
|
478 |
+
return line_polygon
|
479 |
+
|
480 |
+
def cv2_to_pil(self, cv2_image):
|
481 |
+
"""Converts an OpenCV image to a PIL Image."""
|
482 |
+
cv2_image_rgb = cv2.cvtColor(cv2_image, cv2.COLOR_BGR2RGB)
|
483 |
+
return PILImage.fromarray(cv2_image_rgb)
|