|
import os |
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
"""MovingThings: The moving things dataset.""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/Rivoks" |
|
|
|
_CITATION = """\ |
|
@ONLINE {beansdata, |
|
author="Rivoks", |
|
title="Moving things dataset", |
|
month="August", |
|
year="2023", |
|
url="https://github.com/Rivoks" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
MovingThings is a dataset of images of moving things programmaticaly generated with Stable Diffusion (v1.5). |
|
It consists of 5 self movement class: roll, flow, zigzag, walk and linear. |
|
Data was annoted by the script that generates the images with the prompt passed to Stable Diffusion. |
|
""" |
|
|
|
_URLS = { |
|
"train": "coming soon...", |
|
"validation": "coming soon...", |
|
"test": "coming soon...", |
|
} |
|
|
|
_NAMES = ["roll", "flow", "zigzag", "walk", "linear"] |
|
|
|
|
|
class Beans(datasets.GeneratorBasedBuilder): |
|
"""Beans plant leaf images dataset.""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"labels": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "labels"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
task_templates=[ImageClassification(image_column="image", label_column="labels")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_files([data_files["train"]]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_files([data_files["validation"]]), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"files": dl_manager.iter_files([data_files["test"]]), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, files): |
|
for i, path in enumerate(files): |
|
file_name = os.path.basename(path) |
|
if file_name.endswith(".jpg"): |
|
yield i, { |
|
"text": path, |
|
"image": path, |
|
"labels": os.path.basename(os.path.dirname(path)).lower(), |
|
} |
|
|