maom commited on
Commit
e583cc1
·
verified ·
1 Parent(s): 20b3af9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -44
README.md CHANGED
@@ -42,44 +42,90 @@ citation_bibtex: "@article{KoehlerLeman2023,\n title = {Sequence-structure-func
42
  \ Ian and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard and Kosciolek,\
43
  \ Tomasz},\n year = {2023},\n month = apr\n}"
44
  citation_apa: Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V.,
45
- Berenberg, D., Vatanen, T., … Kosciolek, T. (2023). Sequence-structure-function
46
- relationships in the microbial protein universe. Nature Communications, 14(1), 2351.
47
- doi:10.1038/s41467-023-37896-w
48
- dataset_info:
49
- features:
50
- - name: id
51
- dtype: string
52
- - name: pdb
53
- dtype: large_string
54
- - name: Filter_Stage2_aBefore
55
- dtype: float64
56
- - name: Filter_Stage2_bQuarter
57
- dtype: float64
58
- - name: Filter_Stage2_cHalf
59
- dtype: float64
60
- - name: Filter_Stage2_dEnd
61
- dtype: float64
62
- - name: clashes_bb
63
- dtype: float64
64
- - name: clashes_total
65
- dtype: float64
66
- - name: score
67
- dtype: float64
68
- - name: silent_score
69
- dtype: float64
70
- - name: time
71
- dtype: float64
72
- splits:
73
- - name: train
74
- num_bytes: 26606148779
75
- num_examples: 211069
76
- download_size: 9111920009
77
- dataset_size: 26606148779
78
  configs:
79
- - config_name: default
80
- data_files:
81
- - split: train
82
- path: data/train-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  ---
84
  # Microbiome Immunity Project: Protein Universe
85
  ~200,000 predicted structures for diverse protein sequences from 1,003
@@ -121,10 +167,7 @@ embeddings from DeepFRI.
121
 
122
  - **License:** cc-by-4.0
123
 
124
- ### Dataset Sources [optional]
125
-
126
- <!-- Provide the basic links for the dataset. -->
127
-
128
  - **Repository:** https://github.com/microbiome-immunity-project/protein_universe
129
  - **Paper:**
130
  Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V., Berenberg,
@@ -142,19 +185,17 @@ proteins from Archaea and Bacteria, whose protein sequences are generally shorte
142
  than Eukaryotic.
143
 
144
  ### Direct Use
145
- This dataset could be used to
146
 
147
  -
148
 
149
 
150
  ### Out-of-Scope Use
151
-
152
  While this dataset has been curated for quality, in some cases the predicted structures
153
  may not represent physically realistic conformations. Thus caution much be used when using
154
  it as training data for protein structure prediction and design.
155
 
156
  ## Dataset Structure
157
-
158
  microbiome_immunity_project_dataset
159
  dataset
160
  dmpfold_high_quality_function_predictions
 
42
  \ Ian and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard and Kosciolek,\
43
  \ Tomasz},\n year = {2023},\n month = apr\n}"
44
  citation_apa: Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V.,
45
+ Berenberg, D., Vatanen, T., Taylor, B. C., Janssen, S., Pataki, A., Carriero, N.,
46
+ Fisk, I., Xavier, R. J., Knight, R., Bonneau, R., Kosciolek, T. (2023).
47
+ Sequence-structure-function relationships in the microbial protein universe.
48
+ Nature Communications, 14(1), 2351. doi:10.1038/s41467-023-37896-w
49
+ config_names:
50
+ - rosetta_models
51
+ - dmpfold_models
52
+ - rosetta_function_predictions
53
+ - dmpfold_function_predictions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
  configs:
55
+ - config_name: rosetta_models
56
+ data_files:
57
+ - split: high_quality
58
+ path: data/rosetta_high_quality_models-*
59
+ - split: low_quality
60
+ path: data/rosetta_low_quality_models-*
61
+ - config_name: dmpfold_models
62
+ data_files:
63
+ - split: high_quality
64
+ path: data/dmpfold_high_quality_models-*
65
+ - split: low_quality
66
+ path: data/dmpfold_low_quality_models-*
67
+ - config_name: DeepFRI_function_predictions
68
+ data_files:
69
+ - split: rosetta_high_quality
70
+ path: data/rosetta_high_quality_function_predictions-*
71
+ - split: rosetta_low_quality
72
+ path: data/rosetta_low_quality_function_predictions-*
73
+ - split: dmpfold_high_quality
74
+ path: data/dmpfold_high_quality_function_predictions-*
75
+ - split: dmpfold_low_quality
76
+ path: data/dmpfold_low_quality_function_predicitons-*
77
+ dataset_info:
78
+ - config_name: rosetta_models
79
+ features:
80
+ - name: id
81
+ dtype: string
82
+ - name: pdb
83
+ dtype: large_string
84
+ - name: Filter_Stage2_aBefore
85
+ dtype: float64
86
+ - name: Filter_Stage2_bQuarter
87
+ dtype: fload64
88
+ - name: Filter_Stage2_cHalf
89
+ dtype: fload64
90
+ - name: Filter_Stage2_dEnd
91
+ dtype: float64
92
+ - name: clashes_bb
93
+ dtype: float64
94
+ - name: clashes_total
95
+ dtype: float64
96
+ - name: score
97
+ dtype: float64
98
+ - name: silent_score
99
+ dtype: float64
100
+ - name: time
101
+ dtype: float64
102
+ splits:
103
+ - name: high_quality
104
+ num_examples: 23164
105
+ - name: low_quality
106
+ num_examples: 309363
107
+ - config_name: dmpfold_models
108
+ features:
109
+ - name: id
110
+ dtype: string
111
+ - name: pdb
112
+ dtype: string
113
+ split:
114
+ - name: high_quality
115
+ num_examples: 203878
116
+ - name: low_quality
117
+ num_examples: 37957
118
+ - config_name: DeepFRI_function_predictions
119
+ features:
120
+ - name: id
121
+ dtype: string
122
+ splits:
123
+ - name: rosetta_high_quality
124
+ - name: rosetta_low_quality
125
+ - name: dmpfold_high_quality
126
+ - name: dmpfold_low_quality
127
+
128
+
129
  ---
130
  # Microbiome Immunity Project: Protein Universe
131
  ~200,000 predicted structures for diverse protein sequences from 1,003
 
167
 
168
  - **License:** cc-by-4.0
169
 
170
+ ### Dataset Sources
 
 
 
171
  - **Repository:** https://github.com/microbiome-immunity-project/protein_universe
172
  - **Paper:**
173
  Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V., Berenberg,
 
185
  than Eukaryotic.
186
 
187
  ### Direct Use
188
+ This dataset could be used to train representation models of protein structure
189
 
190
  -
191
 
192
 
193
  ### Out-of-Scope Use
 
194
  While this dataset has been curated for quality, in some cases the predicted structures
195
  may not represent physically realistic conformations. Thus caution much be used when using
196
  it as training data for protein structure prediction and design.
197
 
198
  ## Dataset Structure
 
199
  microbiome_immunity_project_dataset
200
  dataset
201
  dmpfold_high_quality_function_predictions