Update README.md
Browse files
README.md
CHANGED
@@ -42,44 +42,90 @@ citation_bibtex: "@article{KoehlerLeman2023,\n title = {Sequence-structure-func
|
|
42 |
\ Ian and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard and Kosciolek,\
|
43 |
\ Tomasz},\n year = {2023},\n month = apr\n}"
|
44 |
citation_apa: Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V.,
|
45 |
-
Berenberg, D., Vatanen, T.,
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
-
|
51 |
-
|
52 |
-
-
|
53 |
-
|
54 |
-
- name: Filter_Stage2_aBefore
|
55 |
-
dtype: float64
|
56 |
-
- name: Filter_Stage2_bQuarter
|
57 |
-
dtype: float64
|
58 |
-
- name: Filter_Stage2_cHalf
|
59 |
-
dtype: float64
|
60 |
-
- name: Filter_Stage2_dEnd
|
61 |
-
dtype: float64
|
62 |
-
- name: clashes_bb
|
63 |
-
dtype: float64
|
64 |
-
- name: clashes_total
|
65 |
-
dtype: float64
|
66 |
-
- name: score
|
67 |
-
dtype: float64
|
68 |
-
- name: silent_score
|
69 |
-
dtype: float64
|
70 |
-
- name: time
|
71 |
-
dtype: float64
|
72 |
-
splits:
|
73 |
-
- name: train
|
74 |
-
num_bytes: 26606148779
|
75 |
-
num_examples: 211069
|
76 |
-
download_size: 9111920009
|
77 |
-
dataset_size: 26606148779
|
78 |
configs:
|
79 |
-
- config_name:
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
---
|
84 |
# Microbiome Immunity Project: Protein Universe
|
85 |
~200,000 predicted structures for diverse protein sequences from 1,003
|
@@ -121,10 +167,7 @@ embeddings from DeepFRI.
|
|
121 |
|
122 |
- **License:** cc-by-4.0
|
123 |
|
124 |
-
### Dataset Sources
|
125 |
-
|
126 |
-
<!-- Provide the basic links for the dataset. -->
|
127 |
-
|
128 |
- **Repository:** https://github.com/microbiome-immunity-project/protein_universe
|
129 |
- **Paper:**
|
130 |
Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V., Berenberg,
|
@@ -142,19 +185,17 @@ proteins from Archaea and Bacteria, whose protein sequences are generally shorte
|
|
142 |
than Eukaryotic.
|
143 |
|
144 |
### Direct Use
|
145 |
-
This dataset could be used to
|
146 |
|
147 |
-
|
148 |
|
149 |
|
150 |
### Out-of-Scope Use
|
151 |
-
|
152 |
While this dataset has been curated for quality, in some cases the predicted structures
|
153 |
may not represent physically realistic conformations. Thus caution much be used when using
|
154 |
it as training data for protein structure prediction and design.
|
155 |
|
156 |
## Dataset Structure
|
157 |
-
|
158 |
microbiome_immunity_project_dataset
|
159 |
dataset
|
160 |
dmpfold_high_quality_function_predictions
|
|
|
42 |
\ Ian and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard and Kosciolek,\
|
43 |
\ Tomasz},\n year = {2023},\n month = apr\n}"
|
44 |
citation_apa: Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V.,
|
45 |
+
Berenberg, D., Vatanen, T., Taylor, B. C., Janssen, S., Pataki, A., Carriero, N.,
|
46 |
+
Fisk, I., Xavier, R. J., Knight, R., Bonneau, R., Kosciolek, T. (2023).
|
47 |
+
Sequence-structure-function relationships in the microbial protein universe.
|
48 |
+
Nature Communications, 14(1), 2351. doi:10.1038/s41467-023-37896-w
|
49 |
+
config_names:
|
50 |
+
- rosetta_models
|
51 |
+
- dmpfold_models
|
52 |
+
- rosetta_function_predictions
|
53 |
+
- dmpfold_function_predictions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
configs:
|
55 |
+
- config_name: rosetta_models
|
56 |
+
data_files:
|
57 |
+
- split: high_quality
|
58 |
+
path: data/rosetta_high_quality_models-*
|
59 |
+
- split: low_quality
|
60 |
+
path: data/rosetta_low_quality_models-*
|
61 |
+
- config_name: dmpfold_models
|
62 |
+
data_files:
|
63 |
+
- split: high_quality
|
64 |
+
path: data/dmpfold_high_quality_models-*
|
65 |
+
- split: low_quality
|
66 |
+
path: data/dmpfold_low_quality_models-*
|
67 |
+
- config_name: DeepFRI_function_predictions
|
68 |
+
data_files:
|
69 |
+
- split: rosetta_high_quality
|
70 |
+
path: data/rosetta_high_quality_function_predictions-*
|
71 |
+
- split: rosetta_low_quality
|
72 |
+
path: data/rosetta_low_quality_function_predictions-*
|
73 |
+
- split: dmpfold_high_quality
|
74 |
+
path: data/dmpfold_high_quality_function_predictions-*
|
75 |
+
- split: dmpfold_low_quality
|
76 |
+
path: data/dmpfold_low_quality_function_predicitons-*
|
77 |
+
dataset_info:
|
78 |
+
- config_name: rosetta_models
|
79 |
+
features:
|
80 |
+
- name: id
|
81 |
+
dtype: string
|
82 |
+
- name: pdb
|
83 |
+
dtype: large_string
|
84 |
+
- name: Filter_Stage2_aBefore
|
85 |
+
dtype: float64
|
86 |
+
- name: Filter_Stage2_bQuarter
|
87 |
+
dtype: fload64
|
88 |
+
- name: Filter_Stage2_cHalf
|
89 |
+
dtype: fload64
|
90 |
+
- name: Filter_Stage2_dEnd
|
91 |
+
dtype: float64
|
92 |
+
- name: clashes_bb
|
93 |
+
dtype: float64
|
94 |
+
- name: clashes_total
|
95 |
+
dtype: float64
|
96 |
+
- name: score
|
97 |
+
dtype: float64
|
98 |
+
- name: silent_score
|
99 |
+
dtype: float64
|
100 |
+
- name: time
|
101 |
+
dtype: float64
|
102 |
+
splits:
|
103 |
+
- name: high_quality
|
104 |
+
num_examples: 23164
|
105 |
+
- name: low_quality
|
106 |
+
num_examples: 309363
|
107 |
+
- config_name: dmpfold_models
|
108 |
+
features:
|
109 |
+
- name: id
|
110 |
+
dtype: string
|
111 |
+
- name: pdb
|
112 |
+
dtype: string
|
113 |
+
split:
|
114 |
+
- name: high_quality
|
115 |
+
num_examples: 203878
|
116 |
+
- name: low_quality
|
117 |
+
num_examples: 37957
|
118 |
+
- config_name: DeepFRI_function_predictions
|
119 |
+
features:
|
120 |
+
- name: id
|
121 |
+
dtype: string
|
122 |
+
splits:
|
123 |
+
- name: rosetta_high_quality
|
124 |
+
- name: rosetta_low_quality
|
125 |
+
- name: dmpfold_high_quality
|
126 |
+
- name: dmpfold_low_quality
|
127 |
+
|
128 |
+
|
129 |
---
|
130 |
# Microbiome Immunity Project: Protein Universe
|
131 |
~200,000 predicted structures for diverse protein sequences from 1,003
|
|
|
167 |
|
168 |
- **License:** cc-by-4.0
|
169 |
|
170 |
+
### Dataset Sources
|
|
|
|
|
|
|
171 |
- **Repository:** https://github.com/microbiome-immunity-project/protein_universe
|
172 |
- **Paper:**
|
173 |
Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V., Berenberg,
|
|
|
185 |
than Eukaryotic.
|
186 |
|
187 |
### Direct Use
|
188 |
+
This dataset could be used to train representation models of protein structure
|
189 |
|
190 |
-
|
191 |
|
192 |
|
193 |
### Out-of-Scope Use
|
|
|
194 |
While this dataset has been curated for quality, in some cases the predicted structures
|
195 |
may not represent physically realistic conformations. Thus caution much be used when using
|
196 |
it as training data for protein structure prediction and design.
|
197 |
|
198 |
## Dataset Structure
|
|
|
199 |
microbiome_immunity_project_dataset
|
200 |
dataset
|
201 |
dmpfold_high_quality_function_predictions
|