File size: 2,510 Bytes
b111af8
 
 
f356ef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b111af8
 
 
 
 
 
 
 
 
 
 
f356ef8
b111af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76


# consistency between models and function predictions
source("src/summarize_map.R")


dataset1_name <- arrow::read_parquet(
    "intermediate/dataset1.parquet",
    col_select = "name") |>
    dplyr::mutate(
        WT_name = name |> stringr::str_replace("pdb_[A-Z][0-9]+[A-Z]", "pdb")) |>
    dplyr::filter(
        !(WT_name |> stringr::str_detect("[0-9][A-Z0-9a-z]{3}([.]pdb)?")),
        !(WT_name |> stringr::str_detect("ruler")))

names_joined |> dplyr::filter(is.na(name_models)) |> dplyr::select(-name_models) |> dplyr::filter(!(WT_name |> stringr::str_detect("ruler")), !(WT_name |> stringr::str_detect("set")), !(WT_name |> stringr::str_detect("_del")), !(WT_name |> stringr::str_detect("_ins")), !(WT_name |> stringr::str_detect("_wt[a-z]")), !(WT_name |> stringr::str_detect("scramble")), !(WT_name |> stringr::str_detect("(PP5|ZF5)[.]3")), !(WT_name |> stringr::str_detect("(UAH|SAH)-p53-8R"))) |> dplyr::filter(WT_name |> stringr::str_detect("pdb"))

models_name <- arrow::read_parquet(
    "intermediate/AlphaFold_model_PDBs.parquet",
    col_select = "name") |>
    dplyr::mutate(
        name = name |> stringr::str_replace(":", "[|]"))

names_joined <- dplyr::full_join(
    dataset1_name |> dplyr::mutate(name_dataset1 = WT_name),
    models_name |> dplyr::mutate(name_models = name),
    by = c("WT_name" = "name"))


names_joined_summary <- names_joined |>
    summarize_map(
        x_cols = name_dataset1,
        y_cols = name_models,
        verbose = TRUE)




check_id_consistency <- function(
    dataset_tag,
    split,
    verbose = FALSE) {

    if (verbose) {
        cat("Loading model ids...\n")
    }
    dataset1 <- arrow::read_parquet(
        paste0("intermediate/", dataset_tag, "_", split, ".parquet"),
        col_select = "id")

    if (verbose) {
        cat("Loading function prediction ids...\n")
    }    
    ids_anno <- arrow::read_parquet(
        paste0("intermediate/", dataset_tag, "_function_predictions.parquet"),
        col_select = "id") |>
        dplyr::distinct(id)

    problems <- dplyr::full_join(
        ids_model |>
        dplyr::mutate(model_id = id),
        ids_anno |>
        dplyr::mutate(anno_id = id),
        by = "id") |>
        summarize_map(
            x_cols = model_id,
            y_cols = anno_id,
            verbose = verbose)
    problems
}

check_id_consistency("rosetta_high_quality")
check_id_consistency("rosetta_low_quality")
check_id_consistency("dmpfold_high_quality")
check_id_consistency("dmpfold_low_quality")