Update README.md
Browse files
README.md
CHANGED
@@ -393,29 +393,68 @@ then, from within python load the datasets library
|
|
393 |
|
394 |
To load one of the `MIP` model datasets, use `datasets.load_dataset(...)`:
|
395 |
|
396 |
-
>>> dataset_tag = "
|
397 |
-
>>>
|
398 |
path = "RosettaCommons/MegaScale",
|
399 |
name = dataset_tag,
|
400 |
data_dir = dataset_tag)
|
401 |
-
|
402 |
-
Downloading data: 100
|
403 |
-
|
404 |
-
|
|
|
|
|
|
|
|
|
|
|
405 |
|
406 |
and the dataset is loaded as a `datasets.arrow_dataset.Dataset`
|
407 |
|
408 |
-
>>>
|
409 |
-
|
410 |
-
|
411 |
-
|
|
|
|
|
|
|
|
|
412 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
413 |
|
414 |
-
which is a column oriented format that can be accessed directly, converted in to a `pandas.DataFrame`, or `parquet` format, e.g.
|
415 |
-
|
416 |
-
>>> dataset_models.data.column('pdb')
|
417 |
-
>>> dataset_models.to_pandas()
|
418 |
-
>>> dataset_models.to_parquet("dataset.parquet")
|
419 |
|
420 |
## Dataset Overview
|
421 |
The curated a set of 776,298 high-quality folding stabilities covers
|
|
|
393 |
|
394 |
To load one of the `MIP` model datasets, use `datasets.load_dataset(...)`:
|
395 |
|
396 |
+
>>> dataset_tag = "dataset3_single"
|
397 |
+
>>> dataset3_single = datasets.load_dataset(
|
398 |
path = "RosettaCommons/MegaScale",
|
399 |
name = dataset_tag,
|
400 |
data_dir = dataset_tag)
|
401 |
+
Downloading readme: 100%|██████████████████████████████| 17.0k/17.0k [00:00<00:00, 290kB/s]
|
402 |
+
Downloading data: 100%|███████████████████████████████| 39.8M/39.8M [00:01<00:00, 36.9MB/s]
|
403 |
+
Downloading data: 100%|███████████████████████████████| 41.2M/41.2M [00:00<00:00, 57.3MB/s]
|
404 |
+
Downloading data: 100%|███████████████████████████████| 40.0M/40.0M [00:00<00:00, 43.9MB/s]
|
405 |
+
Downloading data: 100%|███████████████████████████████| 15.5M/15.5M [00:00<00:00, 26.8MB/s]
|
406 |
+
Downloading data: 100%|███████████████████████████████| 14.9M/14.9M [00:00<00:00, 29.4MB/s]
|
407 |
+
Generating train split: 100%|█████████| 1503063/1503063 [00:05<00:00, 262031.56 examples/s]
|
408 |
+
Generating test split: 100%|████████████| 169032/169032 [00:00<00:00, 264056.98 examples/s]
|
409 |
+
Generating val split: 100%|█████████████| 163968/163968 [00:00<00:00, 251806.22 examples/s]
|
410 |
|
411 |
and the dataset is loaded as a `datasets.arrow_dataset.Dataset`
|
412 |
|
413 |
+
>>> dataset3_single
|
414 |
+
DatasetDict({
|
415 |
+
train: Dataset({
|
416 |
+
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
|
417 |
+
deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
|
418 |
+
ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
|
419 |
+
e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
|
420 |
+
num_rows: 1503063
|
421 |
})
|
422 |
+
test: Dataset({
|
423 |
+
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
|
424 |
+
deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
|
425 |
+
ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
|
426 |
+
e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
|
427 |
+
num_rows: 169032
|
428 |
+
})
|
429 |
+
val: Dataset({
|
430 |
+
features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
|
431 |
+
deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
|
432 |
+
ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
|
433 |
+
e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
|
434 |
+
num_rows: 163968
|
435 |
+
})
|
436 |
+
})
|
437 |
+
|
438 |
+
which is a column oriented format that can be accessed directly, written to disk as a `parquet` file or converted in to a `pandas.DataFrame`, e.g.
|
439 |
+
|
440 |
+
>>> dataset3_single['train'].data.column('name')
|
441 |
+
>>> dataset3_single['train'].to_parquet("dataset3_single_train.parquet")
|
442 |
+
>>> dataset3_single.to_pandas()[[WT_name', 'mut_type', 'dG_ML', 'ddG_ML']]
|
443 |
+
WT_name mut_type dG_ML ddG_ML
|
444 |
+
0 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
|
445 |
+
1 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
|
446 |
+
2 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
|
447 |
+
3 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
|
448 |
+
4 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
|
449 |
+
... ... ... ... ...
|
450 |
+
1503058 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
|
451 |
+
1503059 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
|
452 |
+
1503060 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
|
453 |
+
1503061 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
|
454 |
+
1503062 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
|
455 |
+
|
456 |
+
|
457 |
|
|
|
|
|
|
|
|
|
|
|
458 |
|
459 |
## Dataset Overview
|
460 |
The curated a set of 776,298 high-quality folding stabilities covers
|