maom commited on
Commit
f046b25
·
verified ·
1 Parent(s): 42f0d33

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -15
README.md CHANGED
@@ -393,29 +393,68 @@ then, from within python load the datasets library
393
 
394
  To load one of the `MIP` model datasets, use `datasets.load_dataset(...)`:
395
 
396
- >>> dataset_tag = "single_mutant"
397
- >>> dataset = datasets.load_dataset(
398
  path = "RosettaCommons/MegaScale",
399
  name = dataset_tag,
400
  data_dir = dataset_tag)
401
- Resolving data files: 100%|█████████████████████████████████████████| 54/54 [00:00<00:00, 441.70it/s]
402
- Downloading data: 100%|███████████████████████████████████████████| 54/54 [01:34<00:00, 1.74s/files]
403
- Generating train split: 100%|███████████████████████| 211069/211069 [01:41<00:00, 2085.54 examples/s]
404
- Loading dataset shards: 100%|███████████████████████████████████████| 48/48 [00:00<00:00, 211.74it/s]
 
 
 
 
 
405
 
406
  and the dataset is loaded as a `datasets.arrow_dataset.Dataset`
407
 
408
- >>> dataset_models
409
- Dataset({
410
- features: ['id', 'pdb', 'Filter_Stage2_aBefore', 'Filter_Stage2_bQuarter', 'Filter_Stage2_cHalf', 'Filter_Stage2_dEnd', 'clashes_bb', 'clashes_total', 'score', 'silent_score', 'time'],
411
- num_rows: 211069
 
 
 
 
412
  })
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
413
 
414
- which is a column oriented format that can be accessed directly, converted in to a `pandas.DataFrame`, or `parquet` format, e.g.
415
-
416
- >>> dataset_models.data.column('pdb')
417
- >>> dataset_models.to_pandas()
418
- >>> dataset_models.to_parquet("dataset.parquet")
419
 
420
  ## Dataset Overview
421
  The curated a set of 776,298 high-quality folding stabilities covers
 
393
 
394
  To load one of the `MIP` model datasets, use `datasets.load_dataset(...)`:
395
 
396
+ >>> dataset_tag = "dataset3_single"
397
+ >>> dataset3_single = datasets.load_dataset(
398
  path = "RosettaCommons/MegaScale",
399
  name = dataset_tag,
400
  data_dir = dataset_tag)
401
+ Downloading readme: 100%|██████████████████████████████| 17.0k/17.0k [00:00<00:00, 290kB/s]
402
+ Downloading data: 100%|███████████████████████████████| 39.8M/39.8M [00:01<00:00, 36.9MB/s]
403
+ Downloading data: 100%|███████████████████████████████| 41.2M/41.2M [00:00<00:00, 57.3MB/s]
404
+ Downloading data: 100%|███████████████████████████████| 40.0M/40.0M [00:00<00:00, 43.9MB/s]
405
+ Downloading data: 100%|███████████████████████████████| 15.5M/15.5M [00:00<00:00, 26.8MB/s]
406
+ Downloading data: 100%|███████████████████████████████| 14.9M/14.9M [00:00<00:00, 29.4MB/s]
407
+ Generating train split: 100%|█████████| 1503063/1503063 [00:05<00:00, 262031.56 examples/s]
408
+ Generating test split: 100%|████████████| 169032/169032 [00:00<00:00, 264056.98 examples/s]
409
+ Generating val split: 100%|█████████████| 163968/163968 [00:00<00:00, 251806.22 examples/s]
410
 
411
  and the dataset is loaded as a `datasets.arrow_dataset.Dataset`
412
 
413
+ >>> dataset3_single
414
+ DatasetDict({
415
+ train: Dataset({
416
+ features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
417
+ deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
418
+ ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
419
+ e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
420
+ num_rows: 1503063
421
  })
422
+ test: Dataset({
423
+ features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
424
+ deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
425
+ ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
426
+ e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
427
+ num_rows: 169032
428
+ })
429
+ val: Dataset({
430
+ features: ['name', 'dna_seq', 'log10_K50_t', 'log10_K50_t_95CI_high', 'log10_K50_t_95CI_low', 'log10_K50_t_95CI', 'fitting_error_t', 'log10_K50unfolded_t', 'deltaG_t', '\
431
+ deltaG_t_95CI_high', 'deltaG_t_95CI_low', 'deltaG_t_95CI', 'log10_K50_c', 'log10_K50_c_95CI_high', 'log10_K50_c_95CI_low', 'log10_K50_c_95CI', 'fitting_error_c', 'log10_K50unfol\
432
+ ded_c', 'deltaG_c', 'deltaG_c_95CI_high', 'deltaG_c_95CI_low', 'deltaG_c_95CI', 'deltaG', 'deltaG_95CI_high', 'deltaG_95CI_low', 'deltaG_95CI', 'aa_seq_full', 'aa_seq', 'mut_typ\
433
+ e', 'WT_name', 'WT_cluster', 'log10_K50_trypsin_ML', 'log10_K50_chymotrypsin_ML', 'dG_ML', 'ddG_ML', 'Stabilizing_mut', 'pair_name', 'split_name'],
434
+ num_rows: 163968
435
+ })
436
+ })
437
+
438
+ which is a column oriented format that can be accessed directly, written to disk as a `parquet` file or converted in to a `pandas.DataFrame`, e.g.
439
+
440
+ >>> dataset3_single['train'].data.column('name')
441
+ >>> dataset3_single['train'].to_parquet("dataset3_single_train.parquet")
442
+ >>> dataset3_single.to_pandas()[[WT_name', 'mut_type', 'dG_ML', 'ddG_ML']]
443
+ WT_name mut_type dG_ML ddG_ML
444
+ 0 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
445
+ 1 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
446
+ 2 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
447
+ 3 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
448
+ 4 r10_437_TrROS_Hall.pdb E1Q 2.9212264903176783 0.2949200736672686
449
+ ... ... ... ... ...
450
+ 1503058 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
451
+ 1503059 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
452
+ 1503060 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
453
+ 1503061 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
454
+ 1503062 HEEH_rd3_0055.pdb L43C 1.629862324762064 0.07132877903687329
455
+
456
+
457
 
 
 
 
 
 
458
 
459
  ## Dataset Overview
460
  The curated a set of 776,298 high-quality folding stabilities covers