File size: 2,862 Bytes
40912a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""chensu test animal classification dataset with images of cats and dogs"""

import os

import datasets
from datasets.tasks import ImageClassification

_HOMEPAGE = "https://oss.console.aliyun.com/bucket/oss-cn-beijing/340788/object"

_CITATION = """\
@ONLINE {
    author="chensu"
}
"""

_DESCRIPTION = """\
This is a test dataset used to demonstrate the process of creating a hugging face dataset
"""

_URLS = {
    "train": "https://340788.oss-cn-beijing.aliyuncs.com/train.zip",
    "test": "https://340788.oss-cn-beijing.aliyuncs.com/test.zip",
}

_NAMES = ["cat", "dog"]


class CsTestDataset(datasets.GeneratorBasedBuilder):
    """Test classification dataset."""

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image_file_path": datasets.Value("string"),
                    "image": datasets.Image(),
                    "labels": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "labels"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image", label_column="labels")],
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["train"]]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["test"]]),
                },
            ),
        ]

    def _generate_examples(self, files):
        for i, path in enumerate(files):
            file_name = os.path.basename(path)
            if file_name.endswith(".jpeg"):
                yield i, {
                    "image_file_path": path,
                    "image": path,
                    "labels": os.path.basename(os.path.dirname(path)).lower(),
                }