File size: 2,899 Bytes
690248f
 
 
 
 
 
 
 
 
 
 
 
 
 
86dcc30
690248f
 
 
 
86dcc30
690248f
 
 
86dcc30
690248f
 
86dcc30
 
690248f
 
 
 
86dcc30
690248f
 
3b69b05
86dcc30
 
3b69b05
690248f
86dcc30
690248f
 
86dcc30
 
8f507c3
690248f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c1730
690248f
 
 
 
36c1730
 
 
690248f
 
 
36c1730
690248f
 
 
 
 
3b69b05
690248f
86dcc30
36c1730
 
 
 
86dcc30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# coding=utf-8
# Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""chensu test animal classification dataset with images of cats and dogs"""

import os

import datasets
from datasets import load_dataset
from datasets.tasks import ImageClassification


_HOMEPAGE = "https://oss.console.aliyun.com/bucket/oss-cn-beijing/340788/object"

_CITATION = """\
@ONLINE {
    author="chensu"
}
"""

_DESCRIPTION = """\
This is a test dataset used to demonstrate the process of creating a hugging face dataset
"""

_URLS = {
    "train": "https://340788.oss-cn-beijing.aliyuncs.com/train.zip",
    "test": "https://340788.oss-cn-beijing.aliyuncs.com/test.zip",
}

_NAMES = ["cat", "dog"]


class TestDataset(datasets.GeneratorBasedBuilder):
    """Test classification dataset."""
    
    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "image_file_path": datasets.Value("string"),
                    "image": datasets.Image(),
                    "labels": datasets.features.ClassLabel(names=_NAMES),
                }
            ),
            supervised_keys=("image", "labels"),
            homepage=_HOMEPAGE,
            citation=_CITATION,
            task_templates=[ImageClassification(image_column="image", label_column="labels")],
        )

    def _split_generators(self, dl_manager):
        data_files = dl_manager.download_and_extract(_URLS)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["train"]]),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "files": dl_manager.iter_files([data_files["test"]]),
                },
            ),
        ]

    def _generate_examples(self, files):
        for i, path in enumerate(files):
            file_name = os.path.basename(path)
            if file_name.endswith(".jpeg"):
                yield i, {
                    "image_file_path": path,
                    "image": path,
                    "labels": os.path.basename(os.path.dirname(path)).lower(),
                }