# coding=utf-8 # Copyright 2021 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """chensu test animal classification dataset with images of cats and dogs""" import os import datasets from datasets import load_dataset from datasets.tasks import ImageClassification _HOMEPAGE = "https://oss.console.aliyun.com/bucket/oss-cn-beijing/340788/object" _CITATION = """\ @ONLINE { author="chensu" } """ _DESCRIPTION = """\ This is a test dataset used to demonstrate the process of creating a hugging face dataset """ _URLS = { "train": "https://340788.oss-cn-beijing.aliyuncs.com/train.zip", "test": "https://340788.oss-cn-beijing.aliyuncs.com/test.zip", } _NAMES = ["cat", "dog"] class TestDataset(datasets.GeneratorBasedBuilder): """Test classification dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image_file_path": datasets.Value("string"), "image": datasets.Image(), "labels": datasets.features.ClassLabel(names=_NAMES), } ), supervised_keys=("image", "labels"), homepage=_HOMEPAGE, citation=_CITATION, task_templates=[ImageClassification(image_column="image", label_column="labels")], ) def _split_generators(self, dl_manager): data_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "files": dl_manager.iter_files([data_files["train"]]), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "files": dl_manager.iter_files([data_files["test"]]), }, ), ] def _generate_examples(self, files): for i, path in enumerate(files): file_name = os.path.basename(path) if file_name.endswith(".jpeg"): yield i, { "image_file_path": path, "image": path, "labels": os.path.basename(os.path.dirname(path)).lower(), }