Datasets:
File size: 5,524 Bytes
81fb5c0 b25b197 81fb5c0 b25b197 81fb5c0 b25b197 81fb5c0 b25b197 81fb5c0 9c4ce88 132bdab 9c4ce88 80904ea 81fb5c0 80904ea 132bdab 80904ea 132bdab 80904ea 132bdab 80904ea 132bdab 80904ea 132bdab 80904ea 132bdab 80904ea 132bdab 80904ea 132bdab 80904ea 132bdab 28ba80e 132bdab 8c83a79 132bdab 80904ea 132bdab 80904ea 132bdab 80904ea b318284 b2c7f95 b318284 80904ea b25b197 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
---
language:
- en
license: apache-2.0
size_categories:
- 10K<n<100K
task_categories:
- image-text-to-text
pretty_name: Spatial457
tags:
- spatial-reasoning
- multimodal
---
<div align="center">
<img src="https://xingruiwang.github.io/projects/Spatial457/static/images/icon_name.png" alt="Spatial457 Logo" width="240"/>
</div>
<h1 align="center">
<a href="https://arxiv.org/abs/2502.08636">
Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models
</a>
</h1>
<p align="center">
<a href="https://xingruiwang.github.io/">Xingrui Wang</a><sup>1</sup>,
<a href="#">Wufei Ma</a><sup>1</sup>,
<a href="#">Tiezheng Zhang</a><sup>1</sup>,
<a href="#">Celso M. de Melo</a><sup>2</sup>,
<a href="#">Jieneng Chen</a><sup>1</sup>,
<a href="#">Alan Yuille</a><sup>1</sup>
</p>
<p align="center">
<sup>1</sup> Johns Hopkins University
<sup>2</sup> DEVCOM Army Research Laboratory
</p>
<p align="center">
<a href="https://xingruiwang.github.io/projects/Spatial457/">🌐 Project Page</a> •
<a href="https://arxiv.org/abs/2502.08636">📄 Paper</a> •
<a href="https://huggingface.co/datasets/RyanWW/Spatial457">🤗 Dataset</a> •
<a href="https://github.com/XingruiWang/Spatial457">💻 Code</a>
</p>
<p align="center">
<img src="https://xingruiwang.github.io/projects/Spatial457/static/images/teaser.png" alt="Spatial457 Teaser" width="80%"/>
</p>
---
## 🧠 Introduction
**Spatial457** is a diagnostic benchmark designed to evaluate **6D spatial reasoning** in large multimodal models (LMMs). It systematically introduces four core spatial capabilities:
- 🧱 Multi-object understanding
- 🧭 2D spatial localization
- 📦 3D spatial localization
- 🔄 3D orientation estimation
These are assessed across **five difficulty levels** and **seven diverse question types**, ranging from simple object queries to complex reasoning about physical interactions.
---
## 📂 Dataset Structure
The dataset is organized as follows:
```
Spatial457/
├── images/ # RGB images used in VQA tasks
├── questions/ # JSONs for each subtask
│ ├── L1_single.json
│ ├── L2_objects.json
│ ├── L3_2d_spatial.json
│ ├── L4_occ.json
│ └── ...
├── Spatial457.py # Hugging Face dataset loader script
├── README.md # Documentation
```
Each JSON file contains a list of VQA examples, where each item includes:
- "image_filename": image file name used in the question
- "question": natural language question
- "answer": boolean, string, or number
- "program": symbolic program (optional)
- "question_index": unique identifier
This modular structure supports scalable multi-task evaluation across levels and reasoning types.
---
## 🛠️ Dataset Usage
You can load the dataset directly using the Hugging Face 🤗 `datasets` library:
### 🔹 Load a specific subtask (e.g., L5_6d_spatial)
```python
from datasets import load_dataset
dataset = load_dataset("RyanWW/Spatial457", name="L5_6d_spatial", split="validation", data_dir=".")
```
Each example is a dictionary like:
```python
{
'image': <PIL.Image.Image>,
'image_filename': 'superCLEVR_new_000001.png',
'question': 'Is the large red object in front of the yellow car?',
'answer': 'True',
'program': [...],
'question_index': 100001
}
```
### 🔹 Other available configurations
```python
[
"L1_single", "L2_objects", "L3_2d_spatial",
"L4_occ", "L4_pose", "L5_6d_spatial", "L5_collision"
]
```
You can swap `name="..."` in `load_dataset(...)` to evaluate different spatial reasoning capabilities.
## 📊 Benchmark
We benchmarked a wide range of state-of-the-art models—including GPT-4o, Gemini, Claude, and several open-source LMMs—across all subsets. The results below have been updated after rerunning the evaluation. While they show minor variance compared to the results in the published paper, the conclusions remain unchanged.
The inference script supports [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) and is run by setting the dataset to `Spatial457`. You can find the detailed inference scripts [here](https://github.com/XingruiWang/VLMEvalKit).
### Spatial457 Evaluation Results
| Model | L1_single | L2_objects | L3_2d_spatial | L4_occ | L4_pose | L5_6d_spatial | L5_collision |
|------------------------|-----------|------------|---------------|--------|---------|----------------|---------------|
| **GPT-4o** | 72.39 | 64.54 | 58.04 | 48.87 | 43.62 | 43.06 | 44.54 |
| **GeminiPro-1.5** | 69.40 | 66.73 | 55.12 | 51.41 | 44.50 | 43.11 | 44.73 |
| **Claude 3.5 Sonnet** | 61.04 | 59.20 | 55.20 | 40.49 | 41.38 | 38.81 | 46.27 |
| **Qwen2-VL-7B-Instruct** | 62.84 | 58.90 | 53.73 | 26.85 | 26.83 | 36.20 | 34.84 |
---
## 📚 Citation
```bibtex
@inproceedings{wang2025spatial457,
title = {Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning of Large Multimodal Models},
author = {Wang, Xingrui and Ma, Wufei and Zhang, Tiezheng and de Melo, Celso M and Chen, Jieneng and Yuille, Alan},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2025},
url = {https://arxiv.org/abs/2502.08636}
}
``` |