Datasets:

Modalities:
Image
Size:
< 1K
ArXiv:
Libraries:
Datasets
License:
zyanzhe commited on
Commit
b8ef4d3
·
verified ·
1 Parent(s): 2aeb659

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -1
README.md CHANGED
@@ -9,4 +9,90 @@ See the dataset in the huggingface format [here](https://huggingface.co/datasets
9
 
10
  Note that all images in these webpages are replaced by a placeholder image (rick.jpg)
11
 
12
- Please refer to our [project page](https://salt-nlp.github.io/Design2Code/) and paper for more information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  Note that all images in these webpages are replaced by a placeholder image (rick.jpg)
11
 
12
+ Please refer to our [project page](https://salt-nlp.github.io/Design2Code/) and paper for more information.
13
+
14
+ # Example Usage
15
+
16
+ For example, you can generate predictions using [HuggingFaceM4/VLM_WebSight_finetuned](https://huggingface.co/HuggingFaceM4/VLM_WebSight_finetuned).
17
+
18
+ ```
19
+ import torch
20
+ from PIL import Image
21
+ from transformers import AutoModelForCausalLM, AutoProcessor
22
+ from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
23
+ from transformers.image_transforms import resize, to_channel_dimension_format
24
+ from gpt4v_utils import cleanup_response
25
+ from tqdm import tqdm
26
+ import os
27
+
28
+ DEVICE = torch.device("cuda")
29
+ HF_TOKEN = "..." # Your HF_TOKEN
30
+
31
+ PROCESSOR = AutoProcessor.from_pretrained(
32
+ "HuggingFaceM4/VLM_WebSight_finetuned",
33
+ token=HF_TOKEN
34
+ )
35
+ MODEL = AutoModelForCausalLM.from_pretrained(
36
+ "HuggingFaceM4/VLM_WebSight_finetuned",
37
+ token=HF_TOKEN,
38
+ trust_remote_code=True,
39
+ torch_dtype=torch.bfloat16,
40
+ ).to(DEVICE)
41
+
42
+ print ("parameter count: ", MODEL.num_parameters())
43
+
44
+ image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
45
+ BOS_TOKEN = PROCESSOR.tokenizer.bos_token
46
+ BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
47
+
48
+ def convert_to_rgb(image):
49
+ # `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
50
+ # for transparent images. The call to `alpha_composite` handles this case
51
+ if image.mode == "RGB":
52
+ return image
53
+
54
+ image_rgba = image.convert("RGBA")
55
+ background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
56
+ alpha_composite = Image.alpha_composite(background, image_rgba)
57
+ alpha_composite = alpha_composite.convert("RGB")
58
+ return alpha_composite
59
+
60
+ # The processor is the same as the Idefics processor except for the BILINEAR interpolation,
61
+ # so this is a hack in order to redefine ONLY the transform method
62
+ def custom_transform(x):
63
+ x = convert_to_rgb(x)
64
+ x = to_numpy_array(x)
65
+ x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
66
+ x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
67
+ x = PROCESSOR.image_processor.normalize(
68
+ x,
69
+ mean=PROCESSOR.image_processor.image_mean,
70
+ std=PROCESSOR.image_processor.image_std
71
+ )
72
+ x = to_channel_dimension_format(x, ChannelDimension.FIRST)
73
+ x = torch.tensor(x)
74
+ return x
75
+
76
+ inputs = PROCESSOR.tokenizer(
77
+ f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
78
+ return_tensors="pt",
79
+ add_special_tokens=False,
80
+ )
81
+
82
+
83
+ test_data_dir = "/path/to/Design2Code"
84
+ predictions_dir = "/path/to/Design2Code_predictions"
85
+
86
+ for filename in tqdm(os.listdir(test_data_dir)):
87
+ if filename.endswith(".png"):
88
+ image_path = os.path.join(test_data_dir, filename)
89
+ with Image.open(image_path) as image:
90
+ inputs["pixel_values"] = PROCESSOR.image_processor([image], transform=custom_transform)
91
+ inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
92
+ generated_ids = MODEL.generate(**inputs, bad_words_ids=BAD_WORDS_IDS, max_length=4096)
93
+ generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
94
+ generated_text = cleanup_response(generated_text)
95
+
96
+ with open(os.path.join(predictions_dir, filename.replace(".png", ".html")), "w", encoding='utf-8') as f:
97
+ f.write(generated_text)
98
+ ```