File size: 14,623 Bytes
43d2464 deba89c 43d2464 1ad65a1 43d2464 a890935 43d2464 deba89c ee0cea1 43d2464 1ad65a1 5cbd435 1ad65a1 5cbd435 1ad65a1 5cbd435 1ad65a1 5cbd435 1ad65a1 5cbd435 1ad65a1 43d2464 1ad65a1 5cbd435 1ad65a1 43d2464 1ad65a1 43d2464 5cbd435 43d2464 5cbd435 080c62c 43d2464 080c62c 5cbd435 43d2464 5cbd435 080c62c 43d2464 080c62c 43d2464 5cbd435 43d2464 d7ad88c 43d2464 58d11fb 43d2464 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
---
annotations_creators:
- machine-generated
language:
- de
- nl
- en
- fr
- es
language_creators:
- expert-generated
license:
- cc-by-4.0
multilinguality:
- multilingual
pretty_name: Berlin State Library OCR
size_categories:
- 1M<n<10M
source_datasets: []
tags:
- ocr
- library
task_categories:
- fill-mask
- text-generation
task_ids:
- masked-language-modeling
- language-modeling
---
# Dataset Card for Berlin State Library OCR data
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
> The digital collections of the SBB contain 153,942 digitized works from the time period of 1470 to 1945.
> At the time of publication, 28,909 works have been OCR-processed resulting in 4,988,099 full-text pages.
For each page with OCR text, the language has been determined by langid (Lui/Baldwin 2012).
### Supported Tasks and Leaderboards
- `language-modeling`: this dataset has the potential to be used for training language models on historical/OCR'd text. Since it contains OCR confidence, language and date information for many examples, it is also possible to filter this dataset to more closely match the requirements for training data.
-
### Languages
The collection includes material across a large number of languages. The languages of the OCR text have been detected using [langid.py: An Off-the-shelf Language Identification Tool](https://aclanthology.org/P12-3005) (Lui & Baldwin, ACL 2012). The dataset includes a confidence score for the language prediction. **Note:** not all examples may have been successfully matched to the language prediction table from the original data.
The frequency of the top ten languages in the dataset is shown below:
| | frequency |
|----|------------------|
| de | 3.20963e+06 |
| nl | 491322 |
| en | 473496 |
| fr | 216210 |
| es | 68869 |
| lb | 33625 |
| la | 27397 |
| pl | 17458 |
| it | 16012 |
| zh | 11971 |
[More Information Needed]
## Dataset Structure
### Data Instances
Each example represents a single page of OCR'd text.
A single example of the dataset is as follows:
```python
{'aut': 'Doré, Henri',
'date': '1912',
'file name': '00000218.xml',
'language': 'fr',
'language_confidence': 1.0,
'place': 'Chang-hai',
'ppn': '646426230',
'publisher': 'Imprimerie de la Mission Catholique',
'text': "— 338 — Cela fait, on enterre la statuette qu’on vient d’outrager, atten dant la réalisation sur la personne elle-même. C’est l’outrage en effigie. Un deuxième moyen, c’est de représenter l’Esprit Vengeur sous la figure d’un fier-à-bras, armé d’un sabre, ou d’une pique, et de lui confier tout le soin de sa vengeance. On multiplie les incantations et les offrandes en son honneur, pour le porter au paroxysme de la fureur, et inspirer à l’Esprit malin l’idée de l’exécution de ses désirs : en un mot, on fait tout pour faire passer en son cœur la rage de vengeance qui consume le sien propre. C’est une invention diabolique imaginée pour assouvir sa haine sur l’ennemi qu’on a en horreur. Ailleurs, ce n’est qu’une figurine en bois ou en papier, qui est lancée contre l’ennemi; elle se dissimule, ou prend des formes fantastiques pour acomplir son œuvre de vengeance. Qu’on se rappelle la panique qui régna dans la ville de Nan- king ifâ ffl, et ailleurs, l’année où de méchantes gens répandirent le bruit que des hommes de papier volaient en l’air et coupaient les tresses de cheveux des Chinois. Ce fut une véritable terreur, tous étaient affolés, et il y eut à cette occasion de vrais actes de sauvagerie. Voir historiettes sur les envoûtements : Wieger Folk-Lore, N os 50, 128, 157, 158, 159. Corollaire. Les Tao-niu jift fx ou femmes “ Tao-clie'’. A cette super stition peut se rapporter la pratique des magiciennes du Kiang- sou ■n: m, dans les environs de Chang-hai ± m, par exemple. Ces femmes portent constamment avec- elles une statue réputée merveilleuse : elle n’a que quatre ou cinq pouces de hauteur ordinairement. A force de prières, d’incantations, elles finissent par la rendre illuminée, vivante et parlante, ou plutôt piaillarde, car elle ne répond que par des petits cris aigus et répétés aux demandes qu’on lui adressé; elle paraît comme animée, sautille,",
'title': 'Les pratiques superstitieuses',
'wc': [1.0,
0.7266666889,
1.0,
0.9950000048,
0.7059999704,
0.5799999833,
0.7142857313,
0.7250000238,
0.9855555296,
0.6880000234,
0.7099999785,
0.7054545283,
1.0,
0.8125,
0.7950000167,
0.5681818128,
0.5500000119,
0.7900000215,
0.7662500143,
0.8830000162,
0.9359999895,
0.7411110997,
0.7950000167,
0.7962499857,
0.6949999928,
0.8937500119,
0.6299999952,
0.8820000291,
1.0,
0.6781818271,
0.7649999857,
0.437142849,
1.0,
1.0,
0.7416666746,
0.6474999785,
0.8166666627,
0.6825000048,
0.75,
0.7033333182,
0.7599999905,
0.7639999986,
0.7516666651,
1.0,
1.0,
0.5466666818,
0.7571428418,
0.8450000286,
1.0,
0.9350000024,
1.0,
1.0,
0.7099999785,
0.7250000238,
0.8588888645,
0.8366666436,
0.7966666818,
1.0,
0.9066666961,
0.7288888693,
1.0,
0.8333333135,
0.8787500262,
0.6949999928,
0.8849999905,
0.5816666484,
0.5899999738,
0.7922222018,
1.0,
1.0,
0.6657142639,
0.8650000095,
0.7674999833,
0.6000000238,
0.9737499952,
0.8140000105,
0.978333354,
1.0,
0.7799999714,
0.6650000215,
1.0,
0.823333323,
1.0,
0.9599999785,
0.6349999905,
1.0,
0.9599999785,
0.6025000215,
0.8525000215,
0.4875000119,
0.675999999,
0.8833333254,
0.6650000215,
0.7566666603,
0.6200000048,
0.5049999952,
0.4524999857,
1.0,
0.7711111307,
0.6666666865,
0.7128571272,
1.0,
0.8700000048,
0.6728571653,
1.0,
0.6800000072,
0.6499999762,
0.8259999752,
0.7662500143,
0.6725000143,
0.8362500072,
1.0,
0.6600000262,
0.6299999952,
0.6825000048,
0.7220000029,
1.0,
1.0,
0.6587499976,
0.6822222471,
1.0,
0.8339999914,
0.6449999809,
0.7062500119,
0.9150000215,
0.8824999928,
0.6700000167,
0.7250000238,
0.8285714388,
0.5400000215,
1.0,
0.7966666818,
0.7350000143,
0.6188889146,
0.6499999762,
1.0,
0.7459999919,
0.5799999833,
0.7480000257,
1.0,
0.9333333373,
0.790833354,
0.5550000072,
0.6700000167,
0.7766666412,
0.8280000091,
0.7250000238,
0.8669999838,
0.5899999738,
1.0,
0.7562500238,
1.0,
0.7799999714,
0.8500000238,
0.4819999933,
0.9350000024,
1.0,
0.8399999738,
0.7950000167,
1.0,
0.9474999905,
0.453333348,
0.6575000286,
0.9399999976,
0.6733333468,
0.8042857051,
0.7599999905,
1.0,
0.7355555296,
0.6499999762,
0.7118181586,
1.0,
0.621999979,
0.7200000286,
1.0,
0.853333354,
0.6650000215,
0.75,
0.7787500024,
1.0,
0.8840000033,
1.0,
0.851111114,
1.0,
0.9142857194,
1.0,
0.8899999857,
1.0,
0.9024999738,
1.0,
0.6166666746,
0.7533333302,
0.7766666412,
0.6637499928,
1.0,
0.8471428752,
0.7012500167,
0.6600000262,
0.8199999928,
1.0,
0.7766666412,
0.3899999857,
0.7960000038,
0.8050000072,
1.0,
0.8000000119,
0.7620000243,
1.0,
0.7163636088,
0.5699999928,
0.8849999905,
0.6166666746,
0.8799999952,
0.9058333039,
1.0,
0.6866666675,
0.7810000181,
0.3400000036,
0.2599999905,
0.6333333254,
0.6524999738,
0.4875000119,
0.7425000072,
0.75,
0.6863636374,
1.0,
0.8742856979,
0.137500003,
0.2099999934,
0.4199999869,
0.8216666579,
1.0,
0.7563636303,
0.3000000119,
0.8579999804,
0.6679999828,
0.7099999785,
0.7875000238,
0.9499999881,
0.5799999833,
0.9150000215,
0.6600000262,
0.8066666722,
0.729090929,
0.6999999881,
0.7400000095,
0.8066666722,
0.2866666615,
0.6700000167,
0.9225000143,
1.0,
0.7599999905,
0.75,
0.6899999976,
0.3600000143,
0.224999994,
0.5799999833,
0.8874999881,
1.0,
0.8066666722,
0.8985714316,
0.8827272654,
0.8460000157,
0.8880000114,
0.9533333182,
0.7966666818,
0.75,
0.8941666484,
1.0,
0.8450000286,
0.8666666746,
0.9533333182,
0.5883333087,
0.5799999833,
0.6549999714,
0.8600000143,
1.0,
0.7585714459,
0.7114285827,
1.0,
0.8519999981,
0.7250000238,
0.7437499762,
0.6639999747,
0.8939999938,
0.8877778053,
0.7300000191,
1.0,
0.8766666651,
0.8019999862,
0.8928571343,
1.0,
0.853333354,
0.5049999952,
0.5416666865,
0.7963636518,
0.5600000024,
0.8774999976,
0.6299999952,
0.5749999881,
0.8199999928,
0.7766666412,
1.0,
0.9850000143,
0.5674999952,
0.6240000129,
1.0,
0.9485714436,
1.0,
0.8174999952,
0.7919999957,
0.6266666651,
0.7887499928,
0.7825000286,
0.5366666913,
0.65200001,
0.832857132,
0.7488889098]}
```
### Data Fields
- 'file name': filename of the original XML file
- 'text': OCR'd text for that page of the item
- 'wc': the word confidence for each token predicted by the OCR engine
- 'ppn': 'Pica production numbers' an internal ID used by the library. See [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2702544.svg)](https://doi.org/10.5281/zenodo.2702544) for more details.
'language': language predicted by `langid.py` (see above for more details)
-'language_confidence': confidence score given by `langid.py`
- publisher: publisher of the item in which the text appears
- place: place of publication of the item in which the text appears
- date: date of the item in which the text appears
- title: title of the item in which the text appears
- aut: author of the item in which the text appears
[More Information Needed]
### Data Splits
This dataset contains only a single split `train`.
## Dataset Creation
The dataset is created from [OCR fulltexts of the Digital Collections of the Berlin State Library (DC-SBB)](https://doi.org/10.5281/zenodo.3257041) hosted on Zenodo.
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The dataset is created from [OCR fulltexts of the Digital Collections of the Berlin State Library (DC-SBB)](https://doi.org/10.5281/zenodo.3257041) hosted on Zenodo. This dataset includes text content produced through running Optical Character Recognition across 153,942 digitized works held by the Berlin State Library.
The [dataprep.ipynb](https://huggingface.co/datasets/biglam/berlin_state_library_ocr/blob/main/dataprep.ipynb) was used to create this dataset.
To make the dataset more useful for training language models, the following steps were carried out:
- the CSV `xml2csv_alto.csv`, which contains the full text corpus per document page (incl.OCR word confidences) was loaded using the `datasets` library
- this CSV was augmented with language information from `corpus-language.pkl` **note** some examples don't find a match for this. Sometimes this is because a text is blank, but some actual text may be missing predicted language information
- the CSV was further augmented by trying to map the PPN to fields in a metadata download created using [https://github.com/elektrobohemian/StabiHacks/blob/master/oai-analyzer/oai-analyzer.py](https://github.com/elektrobohemian/StabiHacks/blob/master/oai-analyzer/oai-analyzer.py). **note** not all examples are successfully matched to this metadata download.
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
This dataset contains machine-produced annotations for:
- the confidence scores the OCR engines used to produce the full-text materials.
- the predicted languages and associated confidence scores produced by `langid.py`
The dataset also contains metadata for the following fields:
- author
- publisher
- the place of publication
- title
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
This dataset contains historical material, potentially including names, addresses etc., but these are not likely to refer to living individuals.
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
As with any historical material, the views and attitudes expressed in some texts will likely diverge from contemporary beliefs. One should consider carefully how this potential bias may become reflected in language models trained on this data.
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Initial data created by: Labusch, Kai; Zellhöfer, David
### Licensing Information
[Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/legalcode)
### Citation Information
```
@dataset{labusch_kai_2019_3257041,
author = {Labusch, Kai and
Zellhöfer, David},
title = {{OCR fulltexts of the Digital Collections of the
Berlin State Library (DC-SBB)}},
month = jun,
year = 2019,
publisher = {Zenodo},
version = {1.0},
doi = {10.5281/zenodo.3257041},
url = {https://doi.org/10.5281/zenodo.3257041}
}
```
### Contributions
Thanks to [@davanstrien](https://github.com/davanstrien) for adding this dataset.
|