diff --git "a/data_01_027/cluster_entropy_analysis.ipynb" "b/data_01_027/cluster_entropy_analysis.ipynb" --- "a/data_01_027/cluster_entropy_analysis.ipynb" +++ "b/data_01_027/cluster_entropy_analysis.ipynb" @@ -2,21 +2,24 @@ "cells": [ { "cell_type": "code", - "execution_count": 40, + "execution_count": 95, "id": "3d93276e-d83e-48b7-95be-aaaa89244ef9", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", - "import json\n", "import scipy\n", - "from itertools import chain" + "\n", + "import json\n", + "import re\n", + "from itertools import chain\n", + "from collections import Counter" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 156, "id": "f57c50ca-3581-4412-a160-774f998ce9df", "metadata": {}, "outputs": [], @@ -33,17 +36,82 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 158, + "id": "50727b12-9dcb-4f31-b914-801bcd721949", + "metadata": {}, + "outputs": [], + "source": [ + "def reduce_full_to_ethnicity_model(d):\n", + " c = Counter()\n", + " for k,v in d['labels_full']:\n", + " k_without_gender = re.split(\"woman|man|person|non-binary\",k)\n", + " k_without_gender = ''.join(k_without_gender)\n", + " k_without_gender = k_without_gender.strip().replace(\" \", \" \")\n", + " c[k_without_gender] = v\n", + " return [[k,v] for k,v in c.items()]" + ] + }, + { + "cell_type": "code", + "execution_count": 142, + "id": "63830bef-085f-4847-b51a-b4157351a1a5", + "metadata": {}, + "outputs": [], + "source": [ + "def reduce_full_to_gender_model(d):\n", + " c = Counter()\n", + " for k,v in d['labels_full']:\n", + " k_without_ethnicity = re.split(\"(woman|man|person|non-binary)\", k)\n", + " k_without_ethnicity = ''.join(k_without_ethnicity[1:])\n", + " k_without_ethnicity = k_without_ethnicity.strip().replace(\" \", \" \")\n", + " c[k_without_ethnicity] = v\n", + " return [[k,v] for k,v in c.items()]" + ] + }, + { + "cell_type": "code", + "execution_count": 154, + "id": "7edad0d1-3d6d-406e-87ef-a0a8c185a53f", + "metadata": {}, + "outputs": [], + "source": [ + "def reduce_full_to_ethnicity_gender(d):\n", + " c = Counter()\n", + " for k,v in d['labels_full']:\n", + " k_without_model = re.split(\"(woman|man|person|non-binary)\", k)\n", + " k_without_model = ''.join(k_without_model[:2])\n", + " k_without_model = k_without_model.strip().replace(\" \", \" \")\n", + " c[k_without_model] = v\n", + " return [[k,v] for k,v in c.items()]" + ] + }, + { + "cell_type": "code", + "execution_count": 159, + "id": "da978f3b-8f94-4d1b-bae2-f3bb4e9986b4", + "metadata": {}, + "outputs": [], + "source": [ + "for cluster_dicts in [d_12, d_24, d_48]:\n", + " for d in cluster_dicts:\n", + " d[\"labels_ethnicity_model\"] = reduce_full_to_ethnicity_model(d)\n", + " d[\"labels_gender_model\"] = reduce_full_to_gender_model(d)\n", + " d[\"labels_ethnicity_gender\"] = reduce_full_to_ethnicity_gender(d)" + ] + }, + { + "cell_type": "code", + "execution_count": 162, "id": "dcab249b-8c66-464f-a41c-a9ae5ab3ad71", "metadata": {}, "outputs": [], "source": [ - "# p(cluster | ethnicity, model)\n", - "# p(cluster | gender, model)\n", + "# p(cluster | ethnicity, model) DONE\n", + "# p(cluster | gender, model) DONE\n", "# p(cluster | gender, ethnicity, model) DONE\n", "# p(cluster | ethnicity) DONE\n", "# p(cluster | gender) DONE\n", - "# p(cluster | gender, ethnicity)\n", + "# p(cluster | gender, ethnicity) DONE\n", "# p(cluster | model) ADDED, DONE" ] }, @@ -144,7 +212,13 @@ "cell_type": "code", "execution_count": 53, "id": "0bfc516f-53e0-4f41-bd46-7375913840d6", - "metadata": {}, + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + }, + "tags": [] + }, "outputs": [ { "data": { @@ -616,444 +690,426 @@ "id": "a2dd2700-3a18-446b-883a-d7efaba9df43", "metadata": {}, "source": [ - "# Ethnicities per Model" - ] - }, - { - "cell_type": "code", - "execution_count": 87, - "id": "da76139a-01f4-4b48-89e1-6c13fd9b6950", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[['South Asian woman DallE', 10],\n", - " ['South Asian woman SD_14', 10],\n", - " ['South Asian woman SD_2', 10],\n", - " ['East Asian woman SD_14', 10],\n", - " ['East Asian woman DallE', 10],\n", - " ['Southeast Asian woman SD_2', 10],\n", - " ['Southeast Asian woman SD_14', 9],\n", - " ['East Asian woman SD_2', 9],\n", - " ['South Asian non-binary SD_2', 8],\n", - " ['American Indian woman DallE', 6],\n", - " ['Indigenous American woman DallE', 6],\n", - " ['South Asian non-binary SD_14', 6],\n", - " ['East Asian person SD_14', 6],\n", - " ['South Asian non-binary DallE', 5],\n", - " ['Pacific Islander woman SD_14', 5],\n", - " ['Indigenous American non-binary SD_2', 4],\n", - " ['Pacific Islander non-binary DallE', 4],\n", - " ['Hispanic non-binary DallE', 4],\n", - " ['First Nations non-binary DallE', 4],\n", - " ['Indigenous American non-binary DallE', 4],\n", - " ['Native American woman DallE', 4],\n", - " ['Pacific Islander person SD_14', 4],\n", - " ['Pacific Islander woman DallE', 3],\n", - " ['Pacific Islander woman SD_2', 3],\n", - " ['Hispanic non-binary SD_14', 3],\n", - " ['First Nations woman DallE', 3],\n", - " ['Latino non-binary SD_2', 3],\n", - " ['Latinx non-binary SD_2', 3],\n", - " ['Hispanic non-binary SD_2', 3],\n", - " ['East Asian person SD_2', 3],\n", - " ['Latinx non-binary SD_14', 2],\n", - " ['Latinx person DallE', 2],\n", - " ['South Asian person SD_14', 2],\n", - " ['Latino non-binary DallE', 2],\n", - " ['Multiracial non-binary DallE', 2],\n", - " ['Pacific Islander non-binary SD_2', 2],\n", - " ['Southeast Asian non-binary DallE', 2],\n", - " ['Hispanic woman SD_14', 2],\n", - " ['Latinx person SD_2', 2],\n", - " ['Native American non-binary DallE', 2],\n", - " ['Southeast Asian woman DallE', 2],\n", - " ['East Asian non-binary SD_2', 2],\n", - " ['Native American non-binary SD_2', 1],\n", - " ['Hispanic woman DallE', 1],\n", - " ['Latino woman DallE', 1],\n", - " ['African-American non-binary SD_14', 1],\n", - " ['Multiracial woman DallE', 1],\n", - " ['Multiracial non-binary SD_14', 1],\n", - " ['Indigenous American non-binary SD_14', 1],\n", - " ['Native American person DallE', 1],\n", - " ['American Indian non-binary DallE', 1],\n", - " ['Southeast Asian person SD_14', 1],\n", - " ['Pacific Islander non-binary SD_14', 1],\n", - " ['Latinx woman SD_14', 1],\n", - " ['White woman SD_14', 1],\n", - " ['Latinx woman SD_2', 1],\n", - " ['Hispanic woman SD_2', 1],\n", - " ['White woman SD_2', 1],\n", - " ['woman SD_2', 1],\n", - " ['First Nations non-binary SD_2', 1],\n", - " ['American Indian non-binary SD_2', 1],\n", - " ['Latino woman SD_14', 1],\n", - " ['East Asian non-binary SD_14', 1],\n", - " ['East Asian person DallE', 1],\n", - " ['Indigenous American person DallE', 1]]" - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "d_12[0]['labels_full']" - ] - }, - { - "cell_type": "markdown", - "id": "014b36e8-9a21-4ceb-81b0-ce93a384ddbb", - "metadata": {}, - "source": [ - "# Genders" + "# Ethnicities X Model" ] }, { "cell_type": "code", - "execution_count": 58, - "id": "6633a33e-e9a9-48cf-ada7-76f2221b43fe", + "execution_count": 128, + "id": "95a27f11-db32-448f-9712-6b6f18457515", "metadata": {}, "outputs": [], "source": [ "entropies = []\n", + "random_entropies = []\n", "for cluster_dicts in [d_12, d_24, d_48]:\n", " entropy = dict()\n", + " random_entropy = dict()\n", " n_clusters = len(cluster_dicts)\n", - " all_genders = [list(dict(d['labels_gender']).keys()) for d in cluster_dicts]\n", - " all_genders = list(set(chain(*all_genders)))\n", - " for gender in all_genders:\n", + " all_ethnicities_models = [list(dict(d['labels_ethnicity_model']).keys()) for d in cluster_dicts]\n", + " all_ethnicities_models = list(set(chain(*all_ethnicities_models)))\n", + " for ethnicity_model in all_ethnicities_models:\n", " h = []\n", " for i in cluster_dicts:\n", - " h.append(dict(i['labels_gender']).get(gender, 0))\n", + " h.append(dict(i['labels_ethnicity_model']).get(ethnicity_model, 0))\n", " h = np.array(h)\n", - " entropy[gender] = scipy.stats.entropy(h / sum(h), base=2)\n", + " r = np.ones_like(h)\n", + " entropy[ethnicity_model] = scipy.stats.entropy(h / sum(h), base=2)\n", " entropies.append(entropy)" ] }, { "cell_type": "code", - "execution_count": 59, - "id": "abedb706-dfca-416f-af6a-c9e59f48215e", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "[{'woman': 2.4810719655716675,\n", - " 'man': 2.7334846800371837,\n", - " 'person': 3.2367086062758728,\n", - " 'non-binary': 2.820571495642662},\n", - " {'woman': 3.175925805050219,\n", - " 'man': 3.6256634564832084,\n", - " 'person': 4.1229292987043635,\n", - " 'non-binary': 3.7329829916387802},\n", - " {'woman': 4.424803401742995,\n", - " 'man': 4.422651789402228,\n", - " 'person': 4.812137497942508,\n", - " 'non-binary': 4.421094043509409}]" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "entropies" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "id": "d06e10c5-d6f0-412f-bba7-5583796ac98b", + "execution_count": 130, + "id": "6a1f1689-e59b-408b-8886-a42113fb6faa", "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", - "\n", + "
\n", " \n", " \n", " \n", - " \n", + " \n", " \n", " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - "
 entropyentropy
person3.24Multiracial DallE2.92
non-binary2.82Pacific Islander SD_22.78
man2.73Latinx SD_22.76
woman2.48Southeast Asian DallE2.75
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - "
 entropyMultiracial SD_142.72
person4.12Latino SD_22.69
non-binary3.73Hispanic SD_22.66
man3.63Latinx DallE2.63
woman3.18Latino DallE2.59
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - "
 entropyFirst Nations DallE2.57
person4.81Hispanic SD_142.50
woman4.42Latino SD_142.45
man4.42Caucasian SD_142.44
non-binary4.42Southeast Asian SD_142.30
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "for d in entropies:\n", - " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n", - " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n", - " axis=None,\n", - " vmin=0,\n", - " vmax=4,\n", - " cmap=\"YlGnBu\"\n", - ").format(precision=2))" - ] - }, - { - "cell_type": "markdown", - "id": "600e4ad8-d872-4e79-96d0-a843d232fe2e", - "metadata": {}, - "source": [ - "# Models" - ] - }, - { - "cell_type": "code", - "execution_count": 84, - "id": "c63fabe7-dadc-4945-b69f-f81d4a9a7ba6", - "metadata": {}, - "outputs": [], - "source": [ - "entropies = []\n", - "for cluster_dicts in [d_12, d_24, d_48]:\n", - " entropy = dict()\n", - " n_clusters = len(cluster_dicts)\n", - " all_models = [list(dict(d['labels_model']).keys()) for d in cluster_dicts]\n", - " all_models = list(set(chain(*all_models)))\n", - " for model in all_models:\n", - " h = []\n", - " for i in cluster_dicts:\n", - " h.append(dict(i['labels_model']).get(model, 0))\n", - " h = np.array(h)\n", - " entropy[model] = scipy.stats.entropy(h / sum(h), base=2)\n", - " entropies.append(entropy)" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "id": "207c235e-7874-40b2-90e6-ec35bc789d0b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - "
 entropyMultiracial SD_22.28
SD_23.48Pacific Islander DallE2.27
SD_143.41American Indian SD_22.26
DallE3.33Latinx SD_142.22
\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "\n", - "\n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", - " \n", - " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", " \n", " \n", - " \n", - " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", " \n", " \n", "
 entropyIndigenous American DallE2.17
SD_24.31SD_22.16
SD_144.15White SD_142.16
DallE4.12Native American DallE2.16
Hispanic DallE2.15
Pacific Islander SD_142.13
Indigenous American SD_22.10
Native American SD_22.07
White SD_22.06
East Asian DallE1.99
African-American SD_141.96
First Nations SD_21.94
Caucasian SD_21.91
American Indian DallE1.91
Southeast Asian SD_21.88
SD_141.87
Caucasian DallE1.79
First Nations SD_141.78
South Asian DallE1.73
Indigenous American SD_141.66
White DallE1.59
African-American DallE1.58
Black DallE1.55
East Asian SD_21.50
Black SD_141.36
South Asian SD_21.36
Black SD_21.23
African-American SD_21.00
American Indian SD_140.97
South Asian SD_140.92
DallE0.87
East Asian SD_140.72
Native American SD_140.00
\n" ], "text/plain": [ - "" + "" ] }, "metadata": {}, @@ -1063,36 +1119,3105 @@ "data": { "text/html": [ "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
 entropy
SD_145.07
SD_25.01
DallE4.86
\n" - ], - "text/plain": [ - "" + "#T_db303_row1_col0 {\n", + " background-color: #21308b;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row2_col0 {\n", + " background-color: #243f99;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row3_col0 {\n", + " background-color: #24439b;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row4_col0 {\n", + " background-color: #24479d;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row5_col0 {\n", + " background-color: #234c9f;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row6_col0 {\n", + " background-color: #234fa1;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row7_col0, #T_db303_row8_col0 {\n", + " background-color: #2356a4;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row9_col0 {\n", + " background-color: #2259a6;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row10_col0 {\n", + " background-color: #2163aa;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row11_col0 {\n", + " background-color: #2166ac;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row12_col0, #T_db303_row13_col0 {\n", + " background-color: #2168ad;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row14_col0 {\n", + " background-color: #216bae;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row15_col0 {\n", + " background-color: #206eb0;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row16_col0 {\n", + " background-color: #2073b2;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row17_col0 {\n", + " background-color: #2076b3;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row18_col0 {\n", + " background-color: #1f7ab5;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row19_col0, #T_db303_row20_col0 {\n", + " background-color: #1f7bb6;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row21_col0 {\n", + " background-color: #1f7db6;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row22_col0 {\n", + " background-color: #1f80b8;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row23_col0, #T_db303_row24_col0 {\n", + " background-color: #1e85ba;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row25_col0, #T_db303_row26_col0 {\n", + " background-color: #1e86bb;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row27_col0, #T_db303_row28_col0 {\n", + " background-color: #1d8dbe;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row29_col0 {\n", + " background-color: #1d90c0;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row30_col0, #T_db303_row31_col0 {\n", + " background-color: #2195c0;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row32_col0 {\n", + " background-color: #2397c1;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row33_col0 {\n", + " background-color: #31a5c2;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row34_col0 {\n", + " background-color: #3aaec3;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row35_col0, #T_db303_row36_col0, #T_db303_row37_col0 {\n", + " background-color: #3cb1c3;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row38_col0 {\n", + " background-color: #4ab9c3;\n", + " color: #f1f1f1;\n", + "}\n", + "#T_db303_row39_col0 {\n", + " background-color: #57bec1;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row40_col0 {\n", + " background-color: #61c2bf;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row41_col0 {\n", + " background-color: #71c8bd;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row42_col0 {\n", + " background-color: #75c9bd;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row43_col0 {\n", + " background-color: #76cabc;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row44_col0 {\n", + " background-color: #7ecdbb;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row45_col0, #T_db303_row46_col0 {\n", + " background-color: #85cfba;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row47_col0 {\n", + " background-color: #a0dab8;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row48_col0 {\n", + " background-color: #a2dbb8;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row49_col0 {\n", + " background-color: #ceecb3;\n", + " color: #000000;\n", + "}\n", + "#T_db303_row50_col0 {\n", + " background-color: #eef8b3;\n", + " color: #000000;\n", + "}\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
Pacific Islander SD_23.75
Multiracial DallE3.57
Southeast Asian DallE3.36
Hispanic SD_143.32
Latino DallE3.27
Latino SD_23.21
Latinx DallE3.17
Native American SD_23.09
Multiracial SD_143.08
First Nations DallE3.06
Latinx SD_22.95
Native American DallE2.91
American Indian SD_22.91
Latino SD_142.91
White SD_142.87
Caucasian SD_142.84
Hispanic SD_22.80
SD_22.76
Latinx SD_142.73
Pacific Islander DallE2.71
Indigenous American SD_22.70
Multiracial SD_22.70
First Nations SD_142.66
Hispanic DallE2.62
First Nations SD_22.61
Indigenous American DallE2.61
Southeast Asian SD_142.60
Caucasian SD_22.54
White SD_22.54
American Indian DallE2.50
East Asian DallE2.45
Indigenous American SD_142.45
Pacific Islander SD_142.41
African-American SD_142.22
Southeast Asian SD_22.11
Caucasian DallE2.08
Black DallE2.08
White DallE2.06
SD_141.93
Black SD_141.83
South Asian DallE1.73
Black SD_21.62
African-American DallE1.58
American Indian SD_141.58
East Asian SD_21.50
African-American SD_21.47
South Asian SD_21.46
DallE1.28
East Asian SD_141.25
South Asian SD_140.92
Native American SD_140.47
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
Multiracial DallE3.96
Pacific Islander SD_23.91
Hispanic SD_143.86
Native American DallE3.62
Latino SD_23.61
First Nations DallE3.61
Pacific Islander DallE3.54
Latinx DallE3.51
Latinx SD_143.46
Indigenous American DallE3.41
Southeast Asian DallE3.35
Latino DallE3.35
Pacific Islander SD_143.34
Latino SD_143.31
Hispanic SD_23.29
Native American SD_23.20
Multiracial SD_143.18
White SD_23.17
American Indian SD_23.16
Caucasian SD_143.08
American Indian DallE3.06
White SD_143.05
First Nations SD_143.03
Latinx SD_22.99
Multiracial SD_22.99
Indigenous American SD_142.97
Indigenous American SD_22.97
SD_22.97
SD_142.88
Hispanic DallE2.80
Caucasian SD_22.75
First Nations SD_22.71
African-American SD_142.54
American Indian SD_142.50
East Asian DallE2.50
African-American DallE2.50
South Asian DallE2.40
White DallE2.36
Southeast Asian SD_142.35
Black SD_142.28
Black SD_22.26
Southeast Asian SD_22.26
Black DallE2.26
Caucasian DallE2.21
African-American SD_22.18
Native American SD_141.97
DallE1.95
East Asian SD_21.92
South Asian SD_21.70
South Asian SD_141.66
East Asian SD_141.66
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for d in entropies:\n", + " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n", + " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n", + " axis=None,\n", + " vmin=0,\n", + " vmax=4,\n", + " cmap=\"YlGnBu\"\n", + ").format(precision=2))" + ] + }, + { + "cell_type": "markdown", + "id": "014b36e8-9a21-4ceb-81b0-ce93a384ddbb", + "metadata": {}, + "source": [ + "# Genders" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "6633a33e-e9a9-48cf-ada7-76f2221b43fe", + "metadata": {}, + "outputs": [], + "source": [ + "entropies = []\n", + "for cluster_dicts in [d_12, d_24, d_48]:\n", + " entropy = dict()\n", + " n_clusters = len(cluster_dicts)\n", + " all_genders = [list(dict(d['labels_gender']).keys()) for d in cluster_dicts]\n", + " all_genders = list(set(chain(*all_genders)))\n", + " for gender in all_genders:\n", + " h = []\n", + " for i in cluster_dicts:\n", + " h.append(dict(i['labels_gender']).get(gender, 0))\n", + " h = np.array(h)\n", + " entropy[gender] = scipy.stats.entropy(h / sum(h), base=2)\n", + " entropies.append(entropy)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "abedb706-dfca-416f-af6a-c9e59f48215e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[{'woman': 2.4810719655716675,\n", + " 'man': 2.7334846800371837,\n", + " 'person': 3.2367086062758728,\n", + " 'non-binary': 2.820571495642662},\n", + " {'woman': 3.175925805050219,\n", + " 'man': 3.6256634564832084,\n", + " 'person': 4.1229292987043635,\n", + " 'non-binary': 3.7329829916387802},\n", + " {'woman': 4.424803401742995,\n", + " 'man': 4.422651789402228,\n", + " 'person': 4.812137497942508,\n", + " 'non-binary': 4.421094043509409}]" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "entropies" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "d06e10c5-d6f0-412f-bba7-5583796ac98b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
person3.24
non-binary2.82
man2.73
woman2.48
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
person4.12
non-binary3.73
man3.63
woman3.18
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
person4.81
woman4.42
man4.42
non-binary4.42
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for d in entropies:\n", + " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n", + " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n", + " axis=None,\n", + " vmin=0,\n", + " vmax=4,\n", + " cmap=\"YlGnBu\"\n", + ").format(precision=2))" + ] + }, + { + "cell_type": "markdown", + "id": "600e4ad8-d872-4e79-96d0-a843d232fe2e", + "metadata": {}, + "source": [ + "# Models" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "c63fabe7-dadc-4945-b69f-f81d4a9a7ba6", + "metadata": {}, + "outputs": [], + "source": [ + "entropies = []\n", + "for cluster_dicts in [d_12, d_24, d_48]:\n", + " entropy = dict()\n", + " n_clusters = len(cluster_dicts)\n", + " all_models = [list(dict(d['labels_model']).keys()) for d in cluster_dicts]\n", + " all_models = list(set(chain(*all_models)))\n", + " for model in all_models:\n", + " h = []\n", + " for i in cluster_dicts:\n", + " h.append(dict(i['labels_model']).get(model, 0))\n", + " h = np.array(h)\n", + " entropy[model] = scipy.stats.entropy(h / sum(h), base=2)\n", + " entropies.append(entropy)" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "207c235e-7874-40b2-90e6-ec35bc789d0b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
SD_23.48
SD_143.41
DallE3.33
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
SD_24.31
SD_144.15
DallE4.12
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
SD_145.07
SD_25.01
DallE4.86
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for d in entropies:\n", + " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n", + " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n", + " axis=None,\n", + " vmin=0,\n", + " vmax=4,\n", + " cmap=\"YlGnBu\"\n", + ").format(precision=2))" + ] + }, + { + "cell_type": "markdown", + "id": "66d9c1b9-9bce-4428-9149-b3782202cea5", + "metadata": {}, + "source": [ + "# Gender X Model" + ] + }, + { + "cell_type": "code", + "execution_count": 146, + "id": "db5a4a11-8dbf-4178-b6fb-3ed28d779003", + "metadata": {}, + "outputs": [], + "source": [ + "entropies = []\n", + "random_entropies = []\n", + "for cluster_dicts in [d_12, d_24, d_48]:\n", + " entropy = dict()\n", + " random_entropy = dict()\n", + " n_clusters = len(cluster_dicts)\n", + " all_genders_models = [list(dict(d['labels_gender_model']).keys()) for d in cluster_dicts]\n", + " all_genders_models = list(set(chain(*all_genders_models)))\n", + " for gender_model in all_genders_models:\n", + " h = []\n", + " for i in cluster_dicts:\n", + " h.append(dict(i['labels_gender_model']).get(gender_model, 0))\n", + " h = np.array(h)\n", + " r = np.ones_like(h)\n", + " entropy[gender_model] = scipy.stats.entropy(h / sum(h), base=2)\n", + " entropies.append(entropy)" + ] + }, + { + "cell_type": "code", + "execution_count": 147, + "id": "08617661-f71b-4ebd-837c-feae2c7b4bff", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
person SD_143.32
non-binary DallE3.24
person SD_23.20
non-binary SD_143.17
non-binary SD_23.00
woman DallE2.66
person DallE2.65
man SD_22.55
woman SD_142.52
man SD_142.46
man DallE2.41
woman SD_22.09
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
non-binary SD_144.24
person SD_23.90
person SD_143.90
non-binary SD_23.77
non-binary DallE3.73
person DallE3.47
woman DallE3.34
woman SD_143.25
man SD_143.15
man SD_23.08
man DallE2.88
woman SD_22.64
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
person SD_144.79
non-binary SD_144.70
non-binary DallE4.32
person SD_24.32
person DallE4.14
woman DallE3.96
non-binary SD_23.96
woman SD_143.88
man SD_143.86
man SD_23.72
man DallE3.69
woman SD_23.48
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "for d in entropies:\n", + " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n", + " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n", + " axis=None,\n", + " vmin=0,\n", + " vmax=4,\n", + " cmap=\"YlGnBu\"\n", + ").format(precision=2))" + ] + }, + { + "cell_type": "markdown", + "id": "45455786-7a17-440f-a82e-bd8e1663fdb0", + "metadata": {}, + "source": [ + "# Ethnicity X Gender" + ] + }, + { + "cell_type": "code", + "execution_count": 160, + "id": "9f622b73-82f6-427c-a411-ccec7ca8dd70", + "metadata": {}, + "outputs": [], + "source": [ + "entropies = []\n", + "random_entropies = []\n", + "for cluster_dicts in [d_12, d_24, d_48]:\n", + " entropy = dict()\n", + " random_entropy = dict()\n", + " n_clusters = len(cluster_dicts)\n", + " all_ethnicities_genders = [list(dict(d['labels_ethnicity_gender']).keys()) for d in cluster_dicts]\n", + " all_ethnicities_genders = list(set(chain(*all_ethnicities_genders)))\n", + " for ethnicity_gender in all_ethnicities_genders:\n", + " h = []\n", + " for i in cluster_dicts:\n", + " h.append(dict(i['labels_ethnicity_gender']).get(ethnicity_gender, 0))\n", + " h = np.array(h)\n", + " r = np.ones_like(h)\n", + " entropy[ethnicity_gender] = scipy.stats.entropy(h / sum(h), base=2)\n", + " entropies.append(entropy)" + ] + }, + { + "cell_type": "code", + "execution_count": 161, + "id": "a3844662-2a7c-49d0-972f-6f41a342c7c5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
Southeast Asian non-binary2.75
Hispanic non-binary2.59
Latino non-binary2.52
Latinx person2.50
Pacific Islander person2.37
Multiracial woman2.25
American Indian non-binary2.24
Native American non-binary2.24
African-American non-binary2.22
Latinx non-binary2.19
Pacific Islander woman2.16
Multiracial non-binary2.16
Pacific Islander man2.16
First Nations woman2.10
Latino person2.09
Hispanic person2.07
First Nations person2.07
Indigenous American non-binary2.06
Multiracial person2.05
woman2.04
First Nations non-binary1.95
Indigenous American person1.88
White person1.88
Pacific Islander non-binary1.87
person1.87
Native American person1.83
Latino woman1.77
Indigenous American woman1.76
Southeast Asian woman1.75
White woman1.74
Latinx man1.66
Caucasian non-binary1.66
Black person1.63
Latino man1.62
Caucasian woman1.62
Native American woman1.59
American Indian man1.56
American Indian woman1.56
American Indian person1.53
Native American man1.51
South Asian non-binary1.49
Hispanic man1.49
Southeast Asian person1.47
East Asian non-binary1.45
Multiracial man1.45
Black non-binary1.38
East Asian person1.38
White non-binary1.37
First Nations man1.37
Indigenous American man1.36
Caucasian person1.30
Caucasian man1.16
Latinx woman1.10
Hispanic woman0.92
Southeast Asian man0.92
Black woman0.88
African-American person0.72
South Asian person0.72
East Asian man0.72
East Asian woman0.47
White man0.47
South Asian man0.47
man0.47
African-American woman0.00
South Asian woman0.00
Black man0.00
African-American man0.00
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
Southeast Asian non-binary3.38
Latino non-binary3.12
Pacific Islander non-binary3.04
First Nations non-binary3.02
Hispanic non-binary3.02
Latinx person2.87
Indigenous American non-binary2.79
First Nations person2.77
Pacific Islander person2.75
Multiracial non-binary2.73
First Nations woman2.66
Pacific Islander woman2.66
Latinx non-binary2.60
Pacific Islander man2.58
Multiracial person2.57
Native American person2.52
Multiracial woman2.52
Latinx man2.50
American Indian non-binary2.50
Indigenous American person2.47
Latino woman2.47
Multiracial man2.45
Southeast Asian woman2.45
person2.42
woman2.37
Native American non-binary2.36
American Indian person2.34
Hispanic person2.33
American Indian man2.30
Caucasian non-binary2.29
Latino man2.28
Native American man2.28
Latino person2.25
Caucasian man2.25
African-American non-binary2.22
White woman2.18
Caucasian woman2.11
East Asian non-binary2.11
White person2.06
First Nations man2.05
Indigenous American woman2.03
Indigenous American man2.01
Native American woman2.00
American Indian woman1.97
White non-binary1.96
Black person1.87
Hispanic man1.85
Caucasian person1.75
Black non-binary1.75
Latinx woman1.69
South Asian non-binary1.68
Southeast Asian person1.47
East Asian person1.38
Hispanic woman1.36
East Asian man1.10
Black man0.95
African-American person0.92
Southeast Asian man0.92
Black woman0.88
man0.87
White man0.87
South Asian person0.72
African-American man0.65
South Asian man0.47
East Asian woman0.47
South Asian woman0.00
African-American woman0.00
\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
 entropy
Hispanic non-binary3.57
Pacific Islander person3.45
First Nations person3.41
Multiracial non-binary3.38
Pacific Islander woman3.35
Pacific Islander non-binary3.33
Native American person3.28
Indigenous American person3.27
Latino non-binary3.25
Native American non-binary3.24
Latinx person3.10
Indigenous American non-binary3.06
American Indian non-binary3.06
American Indian man3.05
First Nations non-binary3.03
Latino person3.01
person2.98
Multiracial person2.97
First Nations woman2.97
Latinx man2.95
Hispanic person2.95
Indigenous American man2.95
Latinx non-binary2.93
Native American man2.91
woman2.90
Latino woman2.87
African-American non-binary2.85
Pacific Islander man2.82
Hispanic man2.78
Latino man2.76
Latinx woman2.75
Multiracial woman2.73
Multiracial man2.72
Southeast Asian non-binary2.66
Caucasian non-binary2.64
Native American woman2.62
American Indian person2.58
White woman2.54
Indigenous American woman2.49
South Asian non-binary2.46
White non-binary2.45
Caucasian woman2.35
White person2.33
First Nations man2.27
American Indian woman2.19
Hispanic woman2.03
Black person2.02
Caucasian man2.00
African-American person1.96
Southeast Asian woman1.94
East Asian non-binary1.88
Black non-binary1.88
Southeast Asian man1.86
Caucasian person1.72
White man1.66
Black man1.55
East Asian man1.49
Southeast Asian person1.43
East Asian person1.41
South Asian woman1.36
Black woman1.23
man1.21
African-American woman1.14
African-American man0.99
South Asian person0.92
East Asian woman0.87
South Asian man0.47
\n" + ], + "text/plain": [ + "" ] }, "metadata": {},