diff --git "a/data_01_027/cluster_entropy_analysis.ipynb" "b/data_01_027/cluster_entropy_analysis.ipynb"
--- "a/data_01_027/cluster_entropy_analysis.ipynb"
+++ "b/data_01_027/cluster_entropy_analysis.ipynb"
@@ -2,21 +2,24 @@
"cells": [
{
"cell_type": "code",
- "execution_count": 40,
+ "execution_count": 95,
"id": "3d93276e-d83e-48b7-95be-aaaa89244ef9",
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
- "import json\n",
"import scipy\n",
- "from itertools import chain"
+ "\n",
+ "import json\n",
+ "import re\n",
+ "from itertools import chain\n",
+ "from collections import Counter"
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 156,
"id": "f57c50ca-3581-4412-a160-774f998ce9df",
"metadata": {},
"outputs": [],
@@ -33,17 +36,82 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 158,
+ "id": "50727b12-9dcb-4f31-b914-801bcd721949",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def reduce_full_to_ethnicity_model(d):\n",
+ " c = Counter()\n",
+ " for k,v in d['labels_full']:\n",
+ " k_without_gender = re.split(\"woman|man|person|non-binary\",k)\n",
+ " k_without_gender = ''.join(k_without_gender)\n",
+ " k_without_gender = k_without_gender.strip().replace(\" \", \" \")\n",
+ " c[k_without_gender] = v\n",
+ " return [[k,v] for k,v in c.items()]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 142,
+ "id": "63830bef-085f-4847-b51a-b4157351a1a5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def reduce_full_to_gender_model(d):\n",
+ " c = Counter()\n",
+ " for k,v in d['labels_full']:\n",
+ " k_without_ethnicity = re.split(\"(woman|man|person|non-binary)\", k)\n",
+ " k_without_ethnicity = ''.join(k_without_ethnicity[1:])\n",
+ " k_without_ethnicity = k_without_ethnicity.strip().replace(\" \", \" \")\n",
+ " c[k_without_ethnicity] = v\n",
+ " return [[k,v] for k,v in c.items()]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 154,
+ "id": "7edad0d1-3d6d-406e-87ef-a0a8c185a53f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "def reduce_full_to_ethnicity_gender(d):\n",
+ " c = Counter()\n",
+ " for k,v in d['labels_full']:\n",
+ " k_without_model = re.split(\"(woman|man|person|non-binary)\", k)\n",
+ " k_without_model = ''.join(k_without_model[:2])\n",
+ " k_without_model = k_without_model.strip().replace(\" \", \" \")\n",
+ " c[k_without_model] = v\n",
+ " return [[k,v] for k,v in c.items()]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 159,
+ "id": "da978f3b-8f94-4d1b-bae2-f3bb4e9986b4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "for cluster_dicts in [d_12, d_24, d_48]:\n",
+ " for d in cluster_dicts:\n",
+ " d[\"labels_ethnicity_model\"] = reduce_full_to_ethnicity_model(d)\n",
+ " d[\"labels_gender_model\"] = reduce_full_to_gender_model(d)\n",
+ " d[\"labels_ethnicity_gender\"] = reduce_full_to_ethnicity_gender(d)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 162,
"id": "dcab249b-8c66-464f-a41c-a9ae5ab3ad71",
"metadata": {},
"outputs": [],
"source": [
- "# p(cluster | ethnicity, model)\n",
- "# p(cluster | gender, model)\n",
+ "# p(cluster | ethnicity, model) DONE\n",
+ "# p(cluster | gender, model) DONE\n",
"# p(cluster | gender, ethnicity, model) DONE\n",
"# p(cluster | ethnicity) DONE\n",
"# p(cluster | gender) DONE\n",
- "# p(cluster | gender, ethnicity)\n",
+ "# p(cluster | gender, ethnicity) DONE\n",
"# p(cluster | model) ADDED, DONE"
]
},
@@ -144,7 +212,13 @@
"cell_type": "code",
"execution_count": 53,
"id": "0bfc516f-53e0-4f41-bd46-7375913840d6",
- "metadata": {},
+ "metadata": {
+ "collapsed": true,
+ "jupyter": {
+ "outputs_hidden": true
+ },
+ "tags": []
+ },
"outputs": [
{
"data": {
@@ -616,444 +690,426 @@
"id": "a2dd2700-3a18-446b-883a-d7efaba9df43",
"metadata": {},
"source": [
- "# Ethnicities per Model"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 87,
- "id": "da76139a-01f4-4b48-89e1-6c13fd9b6950",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[['South Asian woman DallE', 10],\n",
- " ['South Asian woman SD_14', 10],\n",
- " ['South Asian woman SD_2', 10],\n",
- " ['East Asian woman SD_14', 10],\n",
- " ['East Asian woman DallE', 10],\n",
- " ['Southeast Asian woman SD_2', 10],\n",
- " ['Southeast Asian woman SD_14', 9],\n",
- " ['East Asian woman SD_2', 9],\n",
- " ['South Asian non-binary SD_2', 8],\n",
- " ['American Indian woman DallE', 6],\n",
- " ['Indigenous American woman DallE', 6],\n",
- " ['South Asian non-binary SD_14', 6],\n",
- " ['East Asian person SD_14', 6],\n",
- " ['South Asian non-binary DallE', 5],\n",
- " ['Pacific Islander woman SD_14', 5],\n",
- " ['Indigenous American non-binary SD_2', 4],\n",
- " ['Pacific Islander non-binary DallE', 4],\n",
- " ['Hispanic non-binary DallE', 4],\n",
- " ['First Nations non-binary DallE', 4],\n",
- " ['Indigenous American non-binary DallE', 4],\n",
- " ['Native American woman DallE', 4],\n",
- " ['Pacific Islander person SD_14', 4],\n",
- " ['Pacific Islander woman DallE', 3],\n",
- " ['Pacific Islander woman SD_2', 3],\n",
- " ['Hispanic non-binary SD_14', 3],\n",
- " ['First Nations woman DallE', 3],\n",
- " ['Latino non-binary SD_2', 3],\n",
- " ['Latinx non-binary SD_2', 3],\n",
- " ['Hispanic non-binary SD_2', 3],\n",
- " ['East Asian person SD_2', 3],\n",
- " ['Latinx non-binary SD_14', 2],\n",
- " ['Latinx person DallE', 2],\n",
- " ['South Asian person SD_14', 2],\n",
- " ['Latino non-binary DallE', 2],\n",
- " ['Multiracial non-binary DallE', 2],\n",
- " ['Pacific Islander non-binary SD_2', 2],\n",
- " ['Southeast Asian non-binary DallE', 2],\n",
- " ['Hispanic woman SD_14', 2],\n",
- " ['Latinx person SD_2', 2],\n",
- " ['Native American non-binary DallE', 2],\n",
- " ['Southeast Asian woman DallE', 2],\n",
- " ['East Asian non-binary SD_2', 2],\n",
- " ['Native American non-binary SD_2', 1],\n",
- " ['Hispanic woman DallE', 1],\n",
- " ['Latino woman DallE', 1],\n",
- " ['African-American non-binary SD_14', 1],\n",
- " ['Multiracial woman DallE', 1],\n",
- " ['Multiracial non-binary SD_14', 1],\n",
- " ['Indigenous American non-binary SD_14', 1],\n",
- " ['Native American person DallE', 1],\n",
- " ['American Indian non-binary DallE', 1],\n",
- " ['Southeast Asian person SD_14', 1],\n",
- " ['Pacific Islander non-binary SD_14', 1],\n",
- " ['Latinx woman SD_14', 1],\n",
- " ['White woman SD_14', 1],\n",
- " ['Latinx woman SD_2', 1],\n",
- " ['Hispanic woman SD_2', 1],\n",
- " ['White woman SD_2', 1],\n",
- " ['woman SD_2', 1],\n",
- " ['First Nations non-binary SD_2', 1],\n",
- " ['American Indian non-binary SD_2', 1],\n",
- " ['Latino woman SD_14', 1],\n",
- " ['East Asian non-binary SD_14', 1],\n",
- " ['East Asian person DallE', 1],\n",
- " ['Indigenous American person DallE', 1]]"
- ]
- },
- "execution_count": 87,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "d_12[0]['labels_full']"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "014b36e8-9a21-4ceb-81b0-ce93a384ddbb",
- "metadata": {},
- "source": [
- "# Genders"
+ "# Ethnicities X Model"
]
},
{
"cell_type": "code",
- "execution_count": 58,
- "id": "6633a33e-e9a9-48cf-ada7-76f2221b43fe",
+ "execution_count": 128,
+ "id": "95a27f11-db32-448f-9712-6b6f18457515",
"metadata": {},
"outputs": [],
"source": [
"entropies = []\n",
+ "random_entropies = []\n",
"for cluster_dicts in [d_12, d_24, d_48]:\n",
" entropy = dict()\n",
+ " random_entropy = dict()\n",
" n_clusters = len(cluster_dicts)\n",
- " all_genders = [list(dict(d['labels_gender']).keys()) for d in cluster_dicts]\n",
- " all_genders = list(set(chain(*all_genders)))\n",
- " for gender in all_genders:\n",
+ " all_ethnicities_models = [list(dict(d['labels_ethnicity_model']).keys()) for d in cluster_dicts]\n",
+ " all_ethnicities_models = list(set(chain(*all_ethnicities_models)))\n",
+ " for ethnicity_model in all_ethnicities_models:\n",
" h = []\n",
" for i in cluster_dicts:\n",
- " h.append(dict(i['labels_gender']).get(gender, 0))\n",
+ " h.append(dict(i['labels_ethnicity_model']).get(ethnicity_model, 0))\n",
" h = np.array(h)\n",
- " entropy[gender] = scipy.stats.entropy(h / sum(h), base=2)\n",
+ " r = np.ones_like(h)\n",
+ " entropy[ethnicity_model] = scipy.stats.entropy(h / sum(h), base=2)\n",
" entropies.append(entropy)"
]
},
{
"cell_type": "code",
- "execution_count": 59,
- "id": "abedb706-dfca-416f-af6a-c9e59f48215e",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/plain": [
- "[{'woman': 2.4810719655716675,\n",
- " 'man': 2.7334846800371837,\n",
- " 'person': 3.2367086062758728,\n",
- " 'non-binary': 2.820571495642662},\n",
- " {'woman': 3.175925805050219,\n",
- " 'man': 3.6256634564832084,\n",
- " 'person': 4.1229292987043635,\n",
- " 'non-binary': 3.7329829916387802},\n",
- " {'woman': 4.424803401742995,\n",
- " 'man': 4.422651789402228,\n",
- " 'person': 4.812137497942508,\n",
- " 'non-binary': 4.421094043509409}]"
- ]
- },
- "execution_count": 59,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "entropies"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 60,
- "id": "d06e10c5-d6f0-412f-bba7-5583796ac98b",
+ "execution_count": 130,
+ "id": "6a1f1689-e59b-408b-8886-a42113fb6faa",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
- "
\n",
+ "\n",
" \n",
" \n",
" | \n",
- " entropy | \n",
+ " entropy | \n",
"
\n",
" \n",
" \n",
" \n",
- " person | \n",
- " 3.24 | \n",
+ " Multiracial DallE | \n",
+ " 2.92 | \n",
"
\n",
" \n",
- " non-binary | \n",
- " 2.82 | \n",
+ " Pacific Islander SD_2 | \n",
+ " 2.78 | \n",
"
\n",
" \n",
- " man | \n",
- " 2.73 | \n",
+ " Latinx SD_2 | \n",
+ " 2.76 | \n",
"
\n",
" \n",
- " woman | \n",
- " 2.48 | \n",
+ " Southeast Asian DallE | \n",
+ " 2.75 | \n",
"
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
" \n",
- " | \n",
- " entropy | \n",
+ " Multiracial SD_14 | \n",
+ " 2.72 | \n",
"
\n",
- " \n",
- " \n",
" \n",
- " person | \n",
- " 4.12 | \n",
+ " Latino SD_2 | \n",
+ " 2.69 | \n",
"
\n",
" \n",
- " non-binary | \n",
- " 3.73 | \n",
+ " Hispanic SD_2 | \n",
+ " 2.66 | \n",
"
\n",
" \n",
- " man | \n",
- " 3.63 | \n",
+ " Latinx DallE | \n",
+ " 2.63 | \n",
"
\n",
" \n",
- " woman | \n",
- " 3.18 | \n",
+ " Latino DallE | \n",
+ " 2.59 | \n",
"
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
" \n",
- " | \n",
- " entropy | \n",
+ " First Nations DallE | \n",
+ " 2.57 | \n",
"
\n",
- " \n",
- " \n",
" \n",
- " person | \n",
- " 4.81 | \n",
+ " Hispanic SD_14 | \n",
+ " 2.50 | \n",
"
\n",
" \n",
- " woman | \n",
- " 4.42 | \n",
+ " Latino SD_14 | \n",
+ " 2.45 | \n",
"
\n",
" \n",
- " man | \n",
- " 4.42 | \n",
+ " Caucasian SD_14 | \n",
+ " 2.44 | \n",
"
\n",
" \n",
- " non-binary | \n",
- " 4.42 | \n",
+ " Southeast Asian SD_14 | \n",
+ " 2.30 | \n",
"
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- }
- ],
- "source": [
- "for d in entropies:\n",
- " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n",
- " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n",
- " axis=None,\n",
- " vmin=0,\n",
- " vmax=4,\n",
- " cmap=\"YlGnBu\"\n",
- ").format(precision=2))"
- ]
- },
- {
- "cell_type": "markdown",
- "id": "600e4ad8-d872-4e79-96d0-a843d232fe2e",
- "metadata": {},
- "source": [
- "# Models"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 84,
- "id": "c63fabe7-dadc-4945-b69f-f81d4a9a7ba6",
- "metadata": {},
- "outputs": [],
- "source": [
- "entropies = []\n",
- "for cluster_dicts in [d_12, d_24, d_48]:\n",
- " entropy = dict()\n",
- " n_clusters = len(cluster_dicts)\n",
- " all_models = [list(dict(d['labels_model']).keys()) for d in cluster_dicts]\n",
- " all_models = list(set(chain(*all_models)))\n",
- " for model in all_models:\n",
- " h = []\n",
- " for i in cluster_dicts:\n",
- " h.append(dict(i['labels_model']).get(model, 0))\n",
- " h = np.array(h)\n",
- " entropy[model] = scipy.stats.entropy(h / sum(h), base=2)\n",
- " entropies.append(entropy)"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 86,
- "id": "207c235e-7874-40b2-90e6-ec35bc789d0b",
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
" \n",
- " | \n",
- " entropy | \n",
+ " Multiracial SD_2 | \n",
+ " 2.28 | \n",
"
\n",
- " \n",
- " \n",
" \n",
- " SD_2 | \n",
- " 3.48 | \n",
+ " Pacific Islander DallE | \n",
+ " 2.27 | \n",
"
\n",
" \n",
- " SD_14 | \n",
- " 3.41 | \n",
+ " American Indian SD_2 | \n",
+ " 2.26 | \n",
"
\n",
" \n",
- " DallE | \n",
- " 3.33 | \n",
+ " Latinx SD_14 | \n",
+ " 2.22 | \n",
"
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
- ]
- },
- "metadata": {},
- "output_type": "display_data"
- },
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- " \n",
" \n",
- " | \n",
- " entropy | \n",
+ " Indigenous American DallE | \n",
+ " 2.17 | \n",
"
\n",
- " \n",
- " \n",
" \n",
- " SD_2 | \n",
- " 4.31 | \n",
+ " SD_2 | \n",
+ " 2.16 | \n",
"
\n",
" \n",
- " SD_14 | \n",
- " 4.15 | \n",
+ " White SD_14 | \n",
+ " 2.16 | \n",
"
\n",
" \n",
- " DallE | \n",
- " 4.12 | \n",
+ " Native American DallE | \n",
+ " 2.16 | \n",
+ "
\n",
+ " \n",
+ " Hispanic DallE | \n",
+ " 2.15 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander SD_14 | \n",
+ " 2.13 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American SD_2 | \n",
+ " 2.10 | \n",
+ "
\n",
+ " \n",
+ " Native American SD_2 | \n",
+ " 2.07 | \n",
+ "
\n",
+ " \n",
+ " White SD_2 | \n",
+ " 2.06 | \n",
+ "
\n",
+ " \n",
+ " East Asian DallE | \n",
+ " 1.99 | \n",
+ "
\n",
+ " \n",
+ " African-American SD_14 | \n",
+ " 1.96 | \n",
+ "
\n",
+ " \n",
+ " First Nations SD_2 | \n",
+ " 1.94 | \n",
+ "
\n",
+ " \n",
+ " Caucasian SD_2 | \n",
+ " 1.91 | \n",
+ "
\n",
+ " \n",
+ " American Indian DallE | \n",
+ " 1.91 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian SD_2 | \n",
+ " 1.88 | \n",
+ "
\n",
+ " \n",
+ " SD_14 | \n",
+ " 1.87 | \n",
+ "
\n",
+ " \n",
+ " Caucasian DallE | \n",
+ " 1.79 | \n",
+ "
\n",
+ " \n",
+ " First Nations SD_14 | \n",
+ " 1.78 | \n",
+ "
\n",
+ " \n",
+ " South Asian DallE | \n",
+ " 1.73 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American SD_14 | \n",
+ " 1.66 | \n",
+ "
\n",
+ " \n",
+ " White DallE | \n",
+ " 1.59 | \n",
+ "
\n",
+ " \n",
+ " African-American DallE | \n",
+ " 1.58 | \n",
+ "
\n",
+ " \n",
+ " Black DallE | \n",
+ " 1.55 | \n",
+ "
\n",
+ " \n",
+ " East Asian SD_2 | \n",
+ " 1.50 | \n",
+ "
\n",
+ " \n",
+ " Black SD_14 | \n",
+ " 1.36 | \n",
+ "
\n",
+ " \n",
+ " South Asian SD_2 | \n",
+ " 1.36 | \n",
+ "
\n",
+ " \n",
+ " Black SD_2 | \n",
+ " 1.23 | \n",
+ "
\n",
+ " \n",
+ " African-American SD_2 | \n",
+ " 1.00 | \n",
+ "
\n",
+ " \n",
+ " American Indian SD_14 | \n",
+ " 0.97 | \n",
+ "
\n",
+ " \n",
+ " South Asian SD_14 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " DallE | \n",
+ " 0.87 | \n",
+ "
\n",
+ " \n",
+ " East Asian SD_14 | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " Native American SD_14 | \n",
+ " 0.00 | \n",
"
\n",
" \n",
"
\n"
],
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -1063,36 +1119,3105 @@
"data": {
"text/html": [
"\n",
- "\n",
- " \n",
- " \n",
- " | \n",
- " entropy | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " SD_14 | \n",
- " 5.07 | \n",
- "
\n",
- " \n",
- " SD_2 | \n",
- " 5.01 | \n",
- "
\n",
- " \n",
- " DallE | \n",
- " 4.86 | \n",
- "
\n",
- " \n",
- "
\n"
- ],
- "text/plain": [
- ""
+ "#T_db303_row1_col0 {\n",
+ " background-color: #21308b;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row2_col0 {\n",
+ " background-color: #243f99;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row3_col0 {\n",
+ " background-color: #24439b;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row4_col0 {\n",
+ " background-color: #24479d;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row5_col0 {\n",
+ " background-color: #234c9f;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row6_col0 {\n",
+ " background-color: #234fa1;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row7_col0, #T_db303_row8_col0 {\n",
+ " background-color: #2356a4;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row9_col0 {\n",
+ " background-color: #2259a6;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row10_col0 {\n",
+ " background-color: #2163aa;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row11_col0 {\n",
+ " background-color: #2166ac;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row12_col0, #T_db303_row13_col0 {\n",
+ " background-color: #2168ad;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row14_col0 {\n",
+ " background-color: #216bae;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row15_col0 {\n",
+ " background-color: #206eb0;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row16_col0 {\n",
+ " background-color: #2073b2;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row17_col0 {\n",
+ " background-color: #2076b3;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row18_col0 {\n",
+ " background-color: #1f7ab5;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row19_col0, #T_db303_row20_col0 {\n",
+ " background-color: #1f7bb6;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row21_col0 {\n",
+ " background-color: #1f7db6;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row22_col0 {\n",
+ " background-color: #1f80b8;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row23_col0, #T_db303_row24_col0 {\n",
+ " background-color: #1e85ba;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row25_col0, #T_db303_row26_col0 {\n",
+ " background-color: #1e86bb;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row27_col0, #T_db303_row28_col0 {\n",
+ " background-color: #1d8dbe;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row29_col0 {\n",
+ " background-color: #1d90c0;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row30_col0, #T_db303_row31_col0 {\n",
+ " background-color: #2195c0;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row32_col0 {\n",
+ " background-color: #2397c1;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row33_col0 {\n",
+ " background-color: #31a5c2;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row34_col0 {\n",
+ " background-color: #3aaec3;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row35_col0, #T_db303_row36_col0, #T_db303_row37_col0 {\n",
+ " background-color: #3cb1c3;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row38_col0 {\n",
+ " background-color: #4ab9c3;\n",
+ " color: #f1f1f1;\n",
+ "}\n",
+ "#T_db303_row39_col0 {\n",
+ " background-color: #57bec1;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row40_col0 {\n",
+ " background-color: #61c2bf;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row41_col0 {\n",
+ " background-color: #71c8bd;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row42_col0 {\n",
+ " background-color: #75c9bd;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row43_col0 {\n",
+ " background-color: #76cabc;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row44_col0 {\n",
+ " background-color: #7ecdbb;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row45_col0, #T_db303_row46_col0 {\n",
+ " background-color: #85cfba;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row47_col0 {\n",
+ " background-color: #a0dab8;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row48_col0 {\n",
+ " background-color: #a2dbb8;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row49_col0 {\n",
+ " background-color: #ceecb3;\n",
+ " color: #000000;\n",
+ "}\n",
+ "#T_db303_row50_col0 {\n",
+ " background-color: #eef8b3;\n",
+ " color: #000000;\n",
+ "}\n",
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Pacific Islander SD_2 | \n",
+ " 3.75 | \n",
+ "
\n",
+ " \n",
+ " Multiracial DallE | \n",
+ " 3.57 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian DallE | \n",
+ " 3.36 | \n",
+ "
\n",
+ " \n",
+ " Hispanic SD_14 | \n",
+ " 3.32 | \n",
+ "
\n",
+ " \n",
+ " Latino DallE | \n",
+ " 3.27 | \n",
+ "
\n",
+ " \n",
+ " Latino SD_2 | \n",
+ " 3.21 | \n",
+ "
\n",
+ " \n",
+ " Latinx DallE | \n",
+ " 3.17 | \n",
+ "
\n",
+ " \n",
+ " Native American SD_2 | \n",
+ " 3.09 | \n",
+ "
\n",
+ " \n",
+ " Multiracial SD_14 | \n",
+ " 3.08 | \n",
+ "
\n",
+ " \n",
+ " First Nations DallE | \n",
+ " 3.06 | \n",
+ "
\n",
+ " \n",
+ " Latinx SD_2 | \n",
+ " 2.95 | \n",
+ "
\n",
+ " \n",
+ " Native American DallE | \n",
+ " 2.91 | \n",
+ "
\n",
+ " \n",
+ " American Indian SD_2 | \n",
+ " 2.91 | \n",
+ "
\n",
+ " \n",
+ " Latino SD_14 | \n",
+ " 2.91 | \n",
+ "
\n",
+ " \n",
+ " White SD_14 | \n",
+ " 2.87 | \n",
+ "
\n",
+ " \n",
+ " Caucasian SD_14 | \n",
+ " 2.84 | \n",
+ "
\n",
+ " \n",
+ " Hispanic SD_2 | \n",
+ " 2.80 | \n",
+ "
\n",
+ " \n",
+ " SD_2 | \n",
+ " 2.76 | \n",
+ "
\n",
+ " \n",
+ " Latinx SD_14 | \n",
+ " 2.73 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander DallE | \n",
+ " 2.71 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American SD_2 | \n",
+ " 2.70 | \n",
+ "
\n",
+ " \n",
+ " Multiracial SD_2 | \n",
+ " 2.70 | \n",
+ "
\n",
+ " \n",
+ " First Nations SD_14 | \n",
+ " 2.66 | \n",
+ "
\n",
+ " \n",
+ " Hispanic DallE | \n",
+ " 2.62 | \n",
+ "
\n",
+ " \n",
+ " First Nations SD_2 | \n",
+ " 2.61 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American DallE | \n",
+ " 2.61 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian SD_14 | \n",
+ " 2.60 | \n",
+ "
\n",
+ " \n",
+ " Caucasian SD_2 | \n",
+ " 2.54 | \n",
+ "
\n",
+ " \n",
+ " White SD_2 | \n",
+ " 2.54 | \n",
+ "
\n",
+ " \n",
+ " American Indian DallE | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " East Asian DallE | \n",
+ " 2.45 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American SD_14 | \n",
+ " 2.45 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander SD_14 | \n",
+ " 2.41 | \n",
+ "
\n",
+ " \n",
+ " African-American SD_14 | \n",
+ " 2.22 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian SD_2 | \n",
+ " 2.11 | \n",
+ "
\n",
+ " \n",
+ " Caucasian DallE | \n",
+ " 2.08 | \n",
+ "
\n",
+ " \n",
+ " Black DallE | \n",
+ " 2.08 | \n",
+ "
\n",
+ " \n",
+ " White DallE | \n",
+ " 2.06 | \n",
+ "
\n",
+ " \n",
+ " SD_14 | \n",
+ " 1.93 | \n",
+ "
\n",
+ " \n",
+ " Black SD_14 | \n",
+ " 1.83 | \n",
+ "
\n",
+ " \n",
+ " South Asian DallE | \n",
+ " 1.73 | \n",
+ "
\n",
+ " \n",
+ " Black SD_2 | \n",
+ " 1.62 | \n",
+ "
\n",
+ " \n",
+ " African-American DallE | \n",
+ " 1.58 | \n",
+ "
\n",
+ " \n",
+ " American Indian SD_14 | \n",
+ " 1.58 | \n",
+ "
\n",
+ " \n",
+ " East Asian SD_2 | \n",
+ " 1.50 | \n",
+ "
\n",
+ " \n",
+ " African-American SD_2 | \n",
+ " 1.47 | \n",
+ "
\n",
+ " \n",
+ " South Asian SD_2 | \n",
+ " 1.46 | \n",
+ "
\n",
+ " \n",
+ " DallE | \n",
+ " 1.28 | \n",
+ "
\n",
+ " \n",
+ " East Asian SD_14 | \n",
+ " 1.25 | \n",
+ "
\n",
+ " \n",
+ " South Asian SD_14 | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " Native American SD_14 | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Multiracial DallE | \n",
+ " 3.96 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander SD_2 | \n",
+ " 3.91 | \n",
+ "
\n",
+ " \n",
+ " Hispanic SD_14 | \n",
+ " 3.86 | \n",
+ "
\n",
+ " \n",
+ " Native American DallE | \n",
+ " 3.62 | \n",
+ "
\n",
+ " \n",
+ " Latino SD_2 | \n",
+ " 3.61 | \n",
+ "
\n",
+ " \n",
+ " First Nations DallE | \n",
+ " 3.61 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander DallE | \n",
+ " 3.54 | \n",
+ "
\n",
+ " \n",
+ " Latinx DallE | \n",
+ " 3.51 | \n",
+ "
\n",
+ " \n",
+ " Latinx SD_14 | \n",
+ " 3.46 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American DallE | \n",
+ " 3.41 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian DallE | \n",
+ " 3.35 | \n",
+ "
\n",
+ " \n",
+ " Latino DallE | \n",
+ " 3.35 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander SD_14 | \n",
+ " 3.34 | \n",
+ "
\n",
+ " \n",
+ " Latino SD_14 | \n",
+ " 3.31 | \n",
+ "
\n",
+ " \n",
+ " Hispanic SD_2 | \n",
+ " 3.29 | \n",
+ "
\n",
+ " \n",
+ " Native American SD_2 | \n",
+ " 3.20 | \n",
+ "
\n",
+ " \n",
+ " Multiracial SD_14 | \n",
+ " 3.18 | \n",
+ "
\n",
+ " \n",
+ " White SD_2 | \n",
+ " 3.17 | \n",
+ "
\n",
+ " \n",
+ " American Indian SD_2 | \n",
+ " 3.16 | \n",
+ "
\n",
+ " \n",
+ " Caucasian SD_14 | \n",
+ " 3.08 | \n",
+ "
\n",
+ " \n",
+ " American Indian DallE | \n",
+ " 3.06 | \n",
+ "
\n",
+ " \n",
+ " White SD_14 | \n",
+ " 3.05 | \n",
+ "
\n",
+ " \n",
+ " First Nations SD_14 | \n",
+ " 3.03 | \n",
+ "
\n",
+ " \n",
+ " Latinx SD_2 | \n",
+ " 2.99 | \n",
+ "
\n",
+ " \n",
+ " Multiracial SD_2 | \n",
+ " 2.99 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American SD_14 | \n",
+ " 2.97 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American SD_2 | \n",
+ " 2.97 | \n",
+ "
\n",
+ " \n",
+ " SD_2 | \n",
+ " 2.97 | \n",
+ "
\n",
+ " \n",
+ " SD_14 | \n",
+ " 2.88 | \n",
+ "
\n",
+ " \n",
+ " Hispanic DallE | \n",
+ " 2.80 | \n",
+ "
\n",
+ " \n",
+ " Caucasian SD_2 | \n",
+ " 2.75 | \n",
+ "
\n",
+ " \n",
+ " First Nations SD_2 | \n",
+ " 2.71 | \n",
+ "
\n",
+ " \n",
+ " African-American SD_14 | \n",
+ " 2.54 | \n",
+ "
\n",
+ " \n",
+ " American Indian SD_14 | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " East Asian DallE | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " African-American DallE | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " South Asian DallE | \n",
+ " 2.40 | \n",
+ "
\n",
+ " \n",
+ " White DallE | \n",
+ " 2.36 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian SD_14 | \n",
+ " 2.35 | \n",
+ "
\n",
+ " \n",
+ " Black SD_14 | \n",
+ " 2.28 | \n",
+ "
\n",
+ " \n",
+ " Black SD_2 | \n",
+ " 2.26 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian SD_2 | \n",
+ " 2.26 | \n",
+ "
\n",
+ " \n",
+ " Black DallE | \n",
+ " 2.26 | \n",
+ "
\n",
+ " \n",
+ " Caucasian DallE | \n",
+ " 2.21 | \n",
+ "
\n",
+ " \n",
+ " African-American SD_2 | \n",
+ " 2.18 | \n",
+ "
\n",
+ " \n",
+ " Native American SD_14 | \n",
+ " 1.97 | \n",
+ "
\n",
+ " \n",
+ " DallE | \n",
+ " 1.95 | \n",
+ "
\n",
+ " \n",
+ " East Asian SD_2 | \n",
+ " 1.92 | \n",
+ "
\n",
+ " \n",
+ " South Asian SD_2 | \n",
+ " 1.70 | \n",
+ "
\n",
+ " \n",
+ " South Asian SD_14 | \n",
+ " 1.66 | \n",
+ "
\n",
+ " \n",
+ " East Asian SD_14 | \n",
+ " 1.66 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "for d in entropies:\n",
+ " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n",
+ " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n",
+ " axis=None,\n",
+ " vmin=0,\n",
+ " vmax=4,\n",
+ " cmap=\"YlGnBu\"\n",
+ ").format(precision=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "014b36e8-9a21-4ceb-81b0-ce93a384ddbb",
+ "metadata": {},
+ "source": [
+ "# Genders"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "id": "6633a33e-e9a9-48cf-ada7-76f2221b43fe",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "entropies = []\n",
+ "for cluster_dicts in [d_12, d_24, d_48]:\n",
+ " entropy = dict()\n",
+ " n_clusters = len(cluster_dicts)\n",
+ " all_genders = [list(dict(d['labels_gender']).keys()) for d in cluster_dicts]\n",
+ " all_genders = list(set(chain(*all_genders)))\n",
+ " for gender in all_genders:\n",
+ " h = []\n",
+ " for i in cluster_dicts:\n",
+ " h.append(dict(i['labels_gender']).get(gender, 0))\n",
+ " h = np.array(h)\n",
+ " entropy[gender] = scipy.stats.entropy(h / sum(h), base=2)\n",
+ " entropies.append(entropy)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "id": "abedb706-dfca-416f-af6a-c9e59f48215e",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "[{'woman': 2.4810719655716675,\n",
+ " 'man': 2.7334846800371837,\n",
+ " 'person': 3.2367086062758728,\n",
+ " 'non-binary': 2.820571495642662},\n",
+ " {'woman': 3.175925805050219,\n",
+ " 'man': 3.6256634564832084,\n",
+ " 'person': 4.1229292987043635,\n",
+ " 'non-binary': 3.7329829916387802},\n",
+ " {'woman': 4.424803401742995,\n",
+ " 'man': 4.422651789402228,\n",
+ " 'person': 4.812137497942508,\n",
+ " 'non-binary': 4.421094043509409}]"
+ ]
+ },
+ "execution_count": 59,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "entropies"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "id": "d06e10c5-d6f0-412f-bba7-5583796ac98b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " person | \n",
+ " 3.24 | \n",
+ "
\n",
+ " \n",
+ " non-binary | \n",
+ " 2.82 | \n",
+ "
\n",
+ " \n",
+ " man | \n",
+ " 2.73 | \n",
+ "
\n",
+ " \n",
+ " woman | \n",
+ " 2.48 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " person | \n",
+ " 4.12 | \n",
+ "
\n",
+ " \n",
+ " non-binary | \n",
+ " 3.73 | \n",
+ "
\n",
+ " \n",
+ " man | \n",
+ " 3.63 | \n",
+ "
\n",
+ " \n",
+ " woman | \n",
+ " 3.18 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " person | \n",
+ " 4.81 | \n",
+ "
\n",
+ " \n",
+ " woman | \n",
+ " 4.42 | \n",
+ "
\n",
+ " \n",
+ " man | \n",
+ " 4.42 | \n",
+ "
\n",
+ " \n",
+ " non-binary | \n",
+ " 4.42 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "for d in entropies:\n",
+ " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n",
+ " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n",
+ " axis=None,\n",
+ " vmin=0,\n",
+ " vmax=4,\n",
+ " cmap=\"YlGnBu\"\n",
+ ").format(precision=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "600e4ad8-d872-4e79-96d0-a843d232fe2e",
+ "metadata": {},
+ "source": [
+ "# Models"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 84,
+ "id": "c63fabe7-dadc-4945-b69f-f81d4a9a7ba6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "entropies = []\n",
+ "for cluster_dicts in [d_12, d_24, d_48]:\n",
+ " entropy = dict()\n",
+ " n_clusters = len(cluster_dicts)\n",
+ " all_models = [list(dict(d['labels_model']).keys()) for d in cluster_dicts]\n",
+ " all_models = list(set(chain(*all_models)))\n",
+ " for model in all_models:\n",
+ " h = []\n",
+ " for i in cluster_dicts:\n",
+ " h.append(dict(i['labels_model']).get(model, 0))\n",
+ " h = np.array(h)\n",
+ " entropy[model] = scipy.stats.entropy(h / sum(h), base=2)\n",
+ " entropies.append(entropy)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 86,
+ "id": "207c235e-7874-40b2-90e6-ec35bc789d0b",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " SD_2 | \n",
+ " 3.48 | \n",
+ "
\n",
+ " \n",
+ " SD_14 | \n",
+ " 3.41 | \n",
+ "
\n",
+ " \n",
+ " DallE | \n",
+ " 3.33 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " SD_2 | \n",
+ " 4.31 | \n",
+ "
\n",
+ " \n",
+ " SD_14 | \n",
+ " 4.15 | \n",
+ "
\n",
+ " \n",
+ " DallE | \n",
+ " 4.12 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " SD_14 | \n",
+ " 5.07 | \n",
+ "
\n",
+ " \n",
+ " SD_2 | \n",
+ " 5.01 | \n",
+ "
\n",
+ " \n",
+ " DallE | \n",
+ " 4.86 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "for d in entropies:\n",
+ " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n",
+ " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n",
+ " axis=None,\n",
+ " vmin=0,\n",
+ " vmax=4,\n",
+ " cmap=\"YlGnBu\"\n",
+ ").format(precision=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "66d9c1b9-9bce-4428-9149-b3782202cea5",
+ "metadata": {},
+ "source": [
+ "# Gender X Model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 146,
+ "id": "db5a4a11-8dbf-4178-b6fb-3ed28d779003",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "entropies = []\n",
+ "random_entropies = []\n",
+ "for cluster_dicts in [d_12, d_24, d_48]:\n",
+ " entropy = dict()\n",
+ " random_entropy = dict()\n",
+ " n_clusters = len(cluster_dicts)\n",
+ " all_genders_models = [list(dict(d['labels_gender_model']).keys()) for d in cluster_dicts]\n",
+ " all_genders_models = list(set(chain(*all_genders_models)))\n",
+ " for gender_model in all_genders_models:\n",
+ " h = []\n",
+ " for i in cluster_dicts:\n",
+ " h.append(dict(i['labels_gender_model']).get(gender_model, 0))\n",
+ " h = np.array(h)\n",
+ " r = np.ones_like(h)\n",
+ " entropy[gender_model] = scipy.stats.entropy(h / sum(h), base=2)\n",
+ " entropies.append(entropy)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 147,
+ "id": "08617661-f71b-4ebd-837c-feae2c7b4bff",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " person SD_14 | \n",
+ " 3.32 | \n",
+ "
\n",
+ " \n",
+ " non-binary DallE | \n",
+ " 3.24 | \n",
+ "
\n",
+ " \n",
+ " person SD_2 | \n",
+ " 3.20 | \n",
+ "
\n",
+ " \n",
+ " non-binary SD_14 | \n",
+ " 3.17 | \n",
+ "
\n",
+ " \n",
+ " non-binary SD_2 | \n",
+ " 3.00 | \n",
+ "
\n",
+ " \n",
+ " woman DallE | \n",
+ " 2.66 | \n",
+ "
\n",
+ " \n",
+ " person DallE | \n",
+ " 2.65 | \n",
+ "
\n",
+ " \n",
+ " man SD_2 | \n",
+ " 2.55 | \n",
+ "
\n",
+ " \n",
+ " woman SD_14 | \n",
+ " 2.52 | \n",
+ "
\n",
+ " \n",
+ " man SD_14 | \n",
+ " 2.46 | \n",
+ "
\n",
+ " \n",
+ " man DallE | \n",
+ " 2.41 | \n",
+ "
\n",
+ " \n",
+ " woman SD_2 | \n",
+ " 2.09 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " non-binary SD_14 | \n",
+ " 4.24 | \n",
+ "
\n",
+ " \n",
+ " person SD_2 | \n",
+ " 3.90 | \n",
+ "
\n",
+ " \n",
+ " person SD_14 | \n",
+ " 3.90 | \n",
+ "
\n",
+ " \n",
+ " non-binary SD_2 | \n",
+ " 3.77 | \n",
+ "
\n",
+ " \n",
+ " non-binary DallE | \n",
+ " 3.73 | \n",
+ "
\n",
+ " \n",
+ " person DallE | \n",
+ " 3.47 | \n",
+ "
\n",
+ " \n",
+ " woman DallE | \n",
+ " 3.34 | \n",
+ "
\n",
+ " \n",
+ " woman SD_14 | \n",
+ " 3.25 | \n",
+ "
\n",
+ " \n",
+ " man SD_14 | \n",
+ " 3.15 | \n",
+ "
\n",
+ " \n",
+ " man SD_2 | \n",
+ " 3.08 | \n",
+ "
\n",
+ " \n",
+ " man DallE | \n",
+ " 2.88 | \n",
+ "
\n",
+ " \n",
+ " woman SD_2 | \n",
+ " 2.64 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " person SD_14 | \n",
+ " 4.79 | \n",
+ "
\n",
+ " \n",
+ " non-binary SD_14 | \n",
+ " 4.70 | \n",
+ "
\n",
+ " \n",
+ " non-binary DallE | \n",
+ " 4.32 | \n",
+ "
\n",
+ " \n",
+ " person SD_2 | \n",
+ " 4.32 | \n",
+ "
\n",
+ " \n",
+ " person DallE | \n",
+ " 4.14 | \n",
+ "
\n",
+ " \n",
+ " woman DallE | \n",
+ " 3.96 | \n",
+ "
\n",
+ " \n",
+ " non-binary SD_2 | \n",
+ " 3.96 | \n",
+ "
\n",
+ " \n",
+ " woman SD_14 | \n",
+ " 3.88 | \n",
+ "
\n",
+ " \n",
+ " man SD_14 | \n",
+ " 3.86 | \n",
+ "
\n",
+ " \n",
+ " man SD_2 | \n",
+ " 3.72 | \n",
+ "
\n",
+ " \n",
+ " man DallE | \n",
+ " 3.69 | \n",
+ "
\n",
+ " \n",
+ " woman SD_2 | \n",
+ " 3.48 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "for d in entropies:\n",
+ " df = pd.DataFrame(pd.Series(d), columns=[\"entropy\"])\n",
+ " display(df.sort_values(\"entropy\", ascending=False).style.background_gradient(\n",
+ " axis=None,\n",
+ " vmin=0,\n",
+ " vmax=4,\n",
+ " cmap=\"YlGnBu\"\n",
+ ").format(precision=2))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "45455786-7a17-440f-a82e-bd8e1663fdb0",
+ "metadata": {},
+ "source": [
+ "# Ethnicity X Gender"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 160,
+ "id": "9f622b73-82f6-427c-a411-ccec7ca8dd70",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "entropies = []\n",
+ "random_entropies = []\n",
+ "for cluster_dicts in [d_12, d_24, d_48]:\n",
+ " entropy = dict()\n",
+ " random_entropy = dict()\n",
+ " n_clusters = len(cluster_dicts)\n",
+ " all_ethnicities_genders = [list(dict(d['labels_ethnicity_gender']).keys()) for d in cluster_dicts]\n",
+ " all_ethnicities_genders = list(set(chain(*all_ethnicities_genders)))\n",
+ " for ethnicity_gender in all_ethnicities_genders:\n",
+ " h = []\n",
+ " for i in cluster_dicts:\n",
+ " h.append(dict(i['labels_ethnicity_gender']).get(ethnicity_gender, 0))\n",
+ " h = np.array(h)\n",
+ " r = np.ones_like(h)\n",
+ " entropy[ethnicity_gender] = scipy.stats.entropy(h / sum(h), base=2)\n",
+ " entropies.append(entropy)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 161,
+ "id": "a3844662-2a7c-49d0-972f-6f41a342c7c5",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Southeast Asian non-binary | \n",
+ " 2.75 | \n",
+ "
\n",
+ " \n",
+ " Hispanic non-binary | \n",
+ " 2.59 | \n",
+ "
\n",
+ " \n",
+ " Latino non-binary | \n",
+ " 2.52 | \n",
+ "
\n",
+ " \n",
+ " Latinx person | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander person | \n",
+ " 2.37 | \n",
+ "
\n",
+ " \n",
+ " Multiracial woman | \n",
+ " 2.25 | \n",
+ "
\n",
+ " \n",
+ " American Indian non-binary | \n",
+ " 2.24 | \n",
+ "
\n",
+ " \n",
+ " Native American non-binary | \n",
+ " 2.24 | \n",
+ "
\n",
+ " \n",
+ " African-American non-binary | \n",
+ " 2.22 | \n",
+ "
\n",
+ " \n",
+ " Latinx non-binary | \n",
+ " 2.19 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander woman | \n",
+ " 2.16 | \n",
+ "
\n",
+ " \n",
+ " Multiracial non-binary | \n",
+ " 2.16 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander man | \n",
+ " 2.16 | \n",
+ "
\n",
+ " \n",
+ " First Nations woman | \n",
+ " 2.10 | \n",
+ "
\n",
+ " \n",
+ " Latino person | \n",
+ " 2.09 | \n",
+ "
\n",
+ " \n",
+ " Hispanic person | \n",
+ " 2.07 | \n",
+ "
\n",
+ " \n",
+ " First Nations person | \n",
+ " 2.07 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American non-binary | \n",
+ " 2.06 | \n",
+ "
\n",
+ " \n",
+ " Multiracial person | \n",
+ " 2.05 | \n",
+ "
\n",
+ " \n",
+ " woman | \n",
+ " 2.04 | \n",
+ "
\n",
+ " \n",
+ " First Nations non-binary | \n",
+ " 1.95 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American person | \n",
+ " 1.88 | \n",
+ "
\n",
+ " \n",
+ " White person | \n",
+ " 1.88 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander non-binary | \n",
+ " 1.87 | \n",
+ "
\n",
+ " \n",
+ " person | \n",
+ " 1.87 | \n",
+ "
\n",
+ " \n",
+ " Native American person | \n",
+ " 1.83 | \n",
+ "
\n",
+ " \n",
+ " Latino woman | \n",
+ " 1.77 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American woman | \n",
+ " 1.76 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian woman | \n",
+ " 1.75 | \n",
+ "
\n",
+ " \n",
+ " White woman | \n",
+ " 1.74 | \n",
+ "
\n",
+ " \n",
+ " Latinx man | \n",
+ " 1.66 | \n",
+ "
\n",
+ " \n",
+ " Caucasian non-binary | \n",
+ " 1.66 | \n",
+ "
\n",
+ " \n",
+ " Black person | \n",
+ " 1.63 | \n",
+ "
\n",
+ " \n",
+ " Latino man | \n",
+ " 1.62 | \n",
+ "
\n",
+ " \n",
+ " Caucasian woman | \n",
+ " 1.62 | \n",
+ "
\n",
+ " \n",
+ " Native American woman | \n",
+ " 1.59 | \n",
+ "
\n",
+ " \n",
+ " American Indian man | \n",
+ " 1.56 | \n",
+ "
\n",
+ " \n",
+ " American Indian woman | \n",
+ " 1.56 | \n",
+ "
\n",
+ " \n",
+ " American Indian person | \n",
+ " 1.53 | \n",
+ "
\n",
+ " \n",
+ " Native American man | \n",
+ " 1.51 | \n",
+ "
\n",
+ " \n",
+ " South Asian non-binary | \n",
+ " 1.49 | \n",
+ "
\n",
+ " \n",
+ " Hispanic man | \n",
+ " 1.49 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian person | \n",
+ " 1.47 | \n",
+ "
\n",
+ " \n",
+ " East Asian non-binary | \n",
+ " 1.45 | \n",
+ "
\n",
+ " \n",
+ " Multiracial man | \n",
+ " 1.45 | \n",
+ "
\n",
+ " \n",
+ " Black non-binary | \n",
+ " 1.38 | \n",
+ "
\n",
+ " \n",
+ " East Asian person | \n",
+ " 1.38 | \n",
+ "
\n",
+ " \n",
+ " White non-binary | \n",
+ " 1.37 | \n",
+ "
\n",
+ " \n",
+ " First Nations man | \n",
+ " 1.37 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American man | \n",
+ " 1.36 | \n",
+ "
\n",
+ " \n",
+ " Caucasian person | \n",
+ " 1.30 | \n",
+ "
\n",
+ " \n",
+ " Caucasian man | \n",
+ " 1.16 | \n",
+ "
\n",
+ " \n",
+ " Latinx woman | \n",
+ " 1.10 | \n",
+ "
\n",
+ " \n",
+ " Hispanic woman | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian man | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " Black woman | \n",
+ " 0.88 | \n",
+ "
\n",
+ " \n",
+ " African-American person | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " South Asian person | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " East Asian man | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " East Asian woman | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ " White man | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ " South Asian man | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ " man | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ " African-American woman | \n",
+ " 0.00 | \n",
+ "
\n",
+ " \n",
+ " South Asian woman | \n",
+ " 0.00 | \n",
+ "
\n",
+ " \n",
+ " Black man | \n",
+ " 0.00 | \n",
+ "
\n",
+ " \n",
+ " African-American man | \n",
+ " 0.00 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Southeast Asian non-binary | \n",
+ " 3.38 | \n",
+ "
\n",
+ " \n",
+ " Latino non-binary | \n",
+ " 3.12 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander non-binary | \n",
+ " 3.04 | \n",
+ "
\n",
+ " \n",
+ " First Nations non-binary | \n",
+ " 3.02 | \n",
+ "
\n",
+ " \n",
+ " Hispanic non-binary | \n",
+ " 3.02 | \n",
+ "
\n",
+ " \n",
+ " Latinx person | \n",
+ " 2.87 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American non-binary | \n",
+ " 2.79 | \n",
+ "
\n",
+ " \n",
+ " First Nations person | \n",
+ " 2.77 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander person | \n",
+ " 2.75 | \n",
+ "
\n",
+ " \n",
+ " Multiracial non-binary | \n",
+ " 2.73 | \n",
+ "
\n",
+ " \n",
+ " First Nations woman | \n",
+ " 2.66 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander woman | \n",
+ " 2.66 | \n",
+ "
\n",
+ " \n",
+ " Latinx non-binary | \n",
+ " 2.60 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander man | \n",
+ " 2.58 | \n",
+ "
\n",
+ " \n",
+ " Multiracial person | \n",
+ " 2.57 | \n",
+ "
\n",
+ " \n",
+ " Native American person | \n",
+ " 2.52 | \n",
+ "
\n",
+ " \n",
+ " Multiracial woman | \n",
+ " 2.52 | \n",
+ "
\n",
+ " \n",
+ " Latinx man | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " American Indian non-binary | \n",
+ " 2.50 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American person | \n",
+ " 2.47 | \n",
+ "
\n",
+ " \n",
+ " Latino woman | \n",
+ " 2.47 | \n",
+ "
\n",
+ " \n",
+ " Multiracial man | \n",
+ " 2.45 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian woman | \n",
+ " 2.45 | \n",
+ "
\n",
+ " \n",
+ " person | \n",
+ " 2.42 | \n",
+ "
\n",
+ " \n",
+ " woman | \n",
+ " 2.37 | \n",
+ "
\n",
+ " \n",
+ " Native American non-binary | \n",
+ " 2.36 | \n",
+ "
\n",
+ " \n",
+ " American Indian person | \n",
+ " 2.34 | \n",
+ "
\n",
+ " \n",
+ " Hispanic person | \n",
+ " 2.33 | \n",
+ "
\n",
+ " \n",
+ " American Indian man | \n",
+ " 2.30 | \n",
+ "
\n",
+ " \n",
+ " Caucasian non-binary | \n",
+ " 2.29 | \n",
+ "
\n",
+ " \n",
+ " Latino man | \n",
+ " 2.28 | \n",
+ "
\n",
+ " \n",
+ " Native American man | \n",
+ " 2.28 | \n",
+ "
\n",
+ " \n",
+ " Latino person | \n",
+ " 2.25 | \n",
+ "
\n",
+ " \n",
+ " Caucasian man | \n",
+ " 2.25 | \n",
+ "
\n",
+ " \n",
+ " African-American non-binary | \n",
+ " 2.22 | \n",
+ "
\n",
+ " \n",
+ " White woman | \n",
+ " 2.18 | \n",
+ "
\n",
+ " \n",
+ " Caucasian woman | \n",
+ " 2.11 | \n",
+ "
\n",
+ " \n",
+ " East Asian non-binary | \n",
+ " 2.11 | \n",
+ "
\n",
+ " \n",
+ " White person | \n",
+ " 2.06 | \n",
+ "
\n",
+ " \n",
+ " First Nations man | \n",
+ " 2.05 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American woman | \n",
+ " 2.03 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American man | \n",
+ " 2.01 | \n",
+ "
\n",
+ " \n",
+ " Native American woman | \n",
+ " 2.00 | \n",
+ "
\n",
+ " \n",
+ " American Indian woman | \n",
+ " 1.97 | \n",
+ "
\n",
+ " \n",
+ " White non-binary | \n",
+ " 1.96 | \n",
+ "
\n",
+ " \n",
+ " Black person | \n",
+ " 1.87 | \n",
+ "
\n",
+ " \n",
+ " Hispanic man | \n",
+ " 1.85 | \n",
+ "
\n",
+ " \n",
+ " Caucasian person | \n",
+ " 1.75 | \n",
+ "
\n",
+ " \n",
+ " Black non-binary | \n",
+ " 1.75 | \n",
+ "
\n",
+ " \n",
+ " Latinx woman | \n",
+ " 1.69 | \n",
+ "
\n",
+ " \n",
+ " South Asian non-binary | \n",
+ " 1.68 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian person | \n",
+ " 1.47 | \n",
+ "
\n",
+ " \n",
+ " East Asian person | \n",
+ " 1.38 | \n",
+ "
\n",
+ " \n",
+ " Hispanic woman | \n",
+ " 1.36 | \n",
+ "
\n",
+ " \n",
+ " East Asian man | \n",
+ " 1.10 | \n",
+ "
\n",
+ " \n",
+ " Black man | \n",
+ " 0.95 | \n",
+ "
\n",
+ " \n",
+ " African-American person | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian man | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " Black woman | \n",
+ " 0.88 | \n",
+ "
\n",
+ " \n",
+ " man | \n",
+ " 0.87 | \n",
+ "
\n",
+ " \n",
+ " White man | \n",
+ " 0.87 | \n",
+ "
\n",
+ " \n",
+ " South Asian person | \n",
+ " 0.72 | \n",
+ "
\n",
+ " \n",
+ " African-American man | \n",
+ " 0.65 | \n",
+ "
\n",
+ " \n",
+ " South Asian man | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ " East Asian woman | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ " South Asian woman | \n",
+ " 0.00 | \n",
+ "
\n",
+ " \n",
+ " African-American woman | \n",
+ " 0.00 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ " \n",
+ " \n",
+ " | \n",
+ " entropy | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Hispanic non-binary | \n",
+ " 3.57 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander person | \n",
+ " 3.45 | \n",
+ "
\n",
+ " \n",
+ " First Nations person | \n",
+ " 3.41 | \n",
+ "
\n",
+ " \n",
+ " Multiracial non-binary | \n",
+ " 3.38 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander woman | \n",
+ " 3.35 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander non-binary | \n",
+ " 3.33 | \n",
+ "
\n",
+ " \n",
+ " Native American person | \n",
+ " 3.28 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American person | \n",
+ " 3.27 | \n",
+ "
\n",
+ " \n",
+ " Latino non-binary | \n",
+ " 3.25 | \n",
+ "
\n",
+ " \n",
+ " Native American non-binary | \n",
+ " 3.24 | \n",
+ "
\n",
+ " \n",
+ " Latinx person | \n",
+ " 3.10 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American non-binary | \n",
+ " 3.06 | \n",
+ "
\n",
+ " \n",
+ " American Indian non-binary | \n",
+ " 3.06 | \n",
+ "
\n",
+ " \n",
+ " American Indian man | \n",
+ " 3.05 | \n",
+ "
\n",
+ " \n",
+ " First Nations non-binary | \n",
+ " 3.03 | \n",
+ "
\n",
+ " \n",
+ " Latino person | \n",
+ " 3.01 | \n",
+ "
\n",
+ " \n",
+ " person | \n",
+ " 2.98 | \n",
+ "
\n",
+ " \n",
+ " Multiracial person | \n",
+ " 2.97 | \n",
+ "
\n",
+ " \n",
+ " First Nations woman | \n",
+ " 2.97 | \n",
+ "
\n",
+ " \n",
+ " Latinx man | \n",
+ " 2.95 | \n",
+ "
\n",
+ " \n",
+ " Hispanic person | \n",
+ " 2.95 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American man | \n",
+ " 2.95 | \n",
+ "
\n",
+ " \n",
+ " Latinx non-binary | \n",
+ " 2.93 | \n",
+ "
\n",
+ " \n",
+ " Native American man | \n",
+ " 2.91 | \n",
+ "
\n",
+ " \n",
+ " woman | \n",
+ " 2.90 | \n",
+ "
\n",
+ " \n",
+ " Latino woman | \n",
+ " 2.87 | \n",
+ "
\n",
+ " \n",
+ " African-American non-binary | \n",
+ " 2.85 | \n",
+ "
\n",
+ " \n",
+ " Pacific Islander man | \n",
+ " 2.82 | \n",
+ "
\n",
+ " \n",
+ " Hispanic man | \n",
+ " 2.78 | \n",
+ "
\n",
+ " \n",
+ " Latino man | \n",
+ " 2.76 | \n",
+ "
\n",
+ " \n",
+ " Latinx woman | \n",
+ " 2.75 | \n",
+ "
\n",
+ " \n",
+ " Multiracial woman | \n",
+ " 2.73 | \n",
+ "
\n",
+ " \n",
+ " Multiracial man | \n",
+ " 2.72 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian non-binary | \n",
+ " 2.66 | \n",
+ "
\n",
+ " \n",
+ " Caucasian non-binary | \n",
+ " 2.64 | \n",
+ "
\n",
+ " \n",
+ " Native American woman | \n",
+ " 2.62 | \n",
+ "
\n",
+ " \n",
+ " American Indian person | \n",
+ " 2.58 | \n",
+ "
\n",
+ " \n",
+ " White woman | \n",
+ " 2.54 | \n",
+ "
\n",
+ " \n",
+ " Indigenous American woman | \n",
+ " 2.49 | \n",
+ "
\n",
+ " \n",
+ " South Asian non-binary | \n",
+ " 2.46 | \n",
+ "
\n",
+ " \n",
+ " White non-binary | \n",
+ " 2.45 | \n",
+ "
\n",
+ " \n",
+ " Caucasian woman | \n",
+ " 2.35 | \n",
+ "
\n",
+ " \n",
+ " White person | \n",
+ " 2.33 | \n",
+ "
\n",
+ " \n",
+ " First Nations man | \n",
+ " 2.27 | \n",
+ "
\n",
+ " \n",
+ " American Indian woman | \n",
+ " 2.19 | \n",
+ "
\n",
+ " \n",
+ " Hispanic woman | \n",
+ " 2.03 | \n",
+ "
\n",
+ " \n",
+ " Black person | \n",
+ " 2.02 | \n",
+ "
\n",
+ " \n",
+ " Caucasian man | \n",
+ " 2.00 | \n",
+ "
\n",
+ " \n",
+ " African-American person | \n",
+ " 1.96 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian woman | \n",
+ " 1.94 | \n",
+ "
\n",
+ " \n",
+ " East Asian non-binary | \n",
+ " 1.88 | \n",
+ "
\n",
+ " \n",
+ " Black non-binary | \n",
+ " 1.88 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian man | \n",
+ " 1.86 | \n",
+ "
\n",
+ " \n",
+ " Caucasian person | \n",
+ " 1.72 | \n",
+ "
\n",
+ " \n",
+ " White man | \n",
+ " 1.66 | \n",
+ "
\n",
+ " \n",
+ " Black man | \n",
+ " 1.55 | \n",
+ "
\n",
+ " \n",
+ " East Asian man | \n",
+ " 1.49 | \n",
+ "
\n",
+ " \n",
+ " Southeast Asian person | \n",
+ " 1.43 | \n",
+ "
\n",
+ " \n",
+ " East Asian person | \n",
+ " 1.41 | \n",
+ "
\n",
+ " \n",
+ " South Asian woman | \n",
+ " 1.36 | \n",
+ "
\n",
+ " \n",
+ " Black woman | \n",
+ " 1.23 | \n",
+ "
\n",
+ " \n",
+ " man | \n",
+ " 1.21 | \n",
+ "
\n",
+ " \n",
+ " African-American woman | \n",
+ " 1.14 | \n",
+ "
\n",
+ " \n",
+ " African-American man | \n",
+ " 0.99 | \n",
+ "
\n",
+ " \n",
+ " South Asian person | \n",
+ " 0.92 | \n",
+ "
\n",
+ " \n",
+ " East Asian woman | \n",
+ " 0.87 | \n",
+ "
\n",
+ " \n",
+ " South Asian man | \n",
+ " 0.47 | \n",
+ "
\n",
+ " \n",
+ "
\n"
+ ],
+ "text/plain": [
+ ""
]
},
"metadata": {},