File size: 7,321 Bytes
1830e50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import fsspec
import pandas as pd
from fsspec.callbacks import TqdmCallback
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (SCHEMA_TO_FEATURES, TASK_TO_SCHEMA,
Licenses, Tasks)
_CITATION = """\
@inproceedings{Juan14,
Title = {Semi-supervised G2P bootstrapping and its application to ASR for a very under-resourced language: Iban},
Author = {Sarah Samson Juan and Laurent Besacier and Solange Rossato},
Booktitle = {Proceedings of Workshop for Spoken Language Technology for Under-resourced (SLTU)},
Year = {2014}}
Month = {May},
@inproceedings{Juan2015,
Title = {Using Resources from a closely-Related language to develop ASR for a very under-resourced Language: A case study for Iban},
Author = {Sarah Samson Juan and Laurent Besacier and Benjamin Lecouteux and Mohamed Dyab},
Booktitle = {Proceedings of INTERSPEECH},
Year = {2015},
Month = {September}}
Address = {Dresden, Germany},
"""
_DATASETNAME = "asr_ibsc"
_DESCRIPTION = """\
This package contains Iban language text and speech suitable for Automatic
Speech Recognition (ASR) experiments. In addition, transcribed speech, 2M tokens
corpus crawled from an online newspaper site is provided. News data was provided
by a local radio station in Sarawak, Malaysia.
"""
_HOMEPAGE = "https://github.com/sarahjuan/iban"
_LANGUAGES = ["iba"]
_LICENSE = Licenses.CC_BY_SA_3_0.value
_LOCAL = False
_URL = "https://github.com/sarahjuan/iban/tree/master/data"
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
_SEACROWD_SCHEMA = f"seacrowd_{TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower()}" # sptext
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class ASRIbanDataset(datasets.GeneratorBasedBuilder):
"""Iban language text and speech suitable for ASR experiments"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_{_SEACROWD_SCHEMA}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=_SEACROWD_SCHEMA,
subset_id=_DATASETNAME,
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"audio": datasets.Audio(sampling_rate=16_000),
"transcription": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
}
)
elif self.config.schema == _SEACROWD_SCHEMA:
features = SCHEMA_TO_FEATURES[TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]]] # speech_text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
# prepare data directory
data_dir = Path.cwd() / "data" / "asr_ibsc"
data_dir.mkdir(parents=True, exist_ok=True)
# download data
# if rate limiting is an issue, pass github username and token
username = None
token = None
fs = fsspec.filesystem("github", org="sarahjuan", repo="iban", ref="master", username=username, token=token)
fs.clear_instance_cache()
# download annotation
print("Downloading annotation...")
fs.get(fs.ls("data/train/"), (data_dir / "train").as_posix(), recursive=True)
fs.get(fs.ls("data/test/"), (data_dir / "test").as_posix(), recursive=True)
# download audio files
print("Downloading audio files (~1GB). It may take several minutes...")
for idx, folder in enumerate(fs.ls("data/wav/")):
folder_name = folder.split("/")[-1]
pbar = TqdmCallback(tqdm_kwargs={"desc": f"-> {folder_name} [{idx+1:2d}/{len(fs.ls('data/wav/'))}]", "unit": "file"})
fs.get(fs.ls(f"data/wav/{folder_name}/"), (data_dir / "wav" / folder_name).as_posix(), recursive=True, callback=pbar)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"data_dir": data_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"data_dir": data_dir,
"split": "test",
},
),
]
def _generate_examples(self, data_dir: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
text_file = data_dir / split / f"{split}_text"
utt2spk_file = data_dir / split / f"{split}_utt2spk"
wav_scp_file = data_dir / split / f"{split}_wav.scp"
# load the data
text_df = pd.read_csv(text_file, sep=" ", header=None, names=["utt_id", "text"])
utt2spk_df = pd.read_csv(utt2spk_file, sep="\t", header=None, names=["utt_id", "speaker"])
wav_df = pd.read_csv(wav_scp_file, sep="\t", header=None, names=["utt_id", "wav_path"])
merged_df = pd.merge(text_df, utt2spk_df, on="utt_id")
merged_df = pd.merge(merged_df, wav_df, on="utt_id")
for _, row in merged_df.iterrows():
wav_file = data_dir / "wav" / row["speaker"] / row["wav_path"].split("/")[-1]
if self.config.schema == "source":
yield row["utt_id"], {
"audio": str(wav_file.as_posix()),
"transcription": row["text"],
"speaker_id": row["speaker"],
}
elif self.config.schema == _SEACROWD_SCHEMA:
yield row["utt_id"], {
"id": row["utt_id"],
"path": str(wav_file),
"audio": str(wav_file.as_posix()),
"text": row["text"],
"speaker_id": row["speaker"],
"metadata": None,
}
|