File size: 8,435 Bytes
b5cb176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""
SEA Crowd Data Loader for Bloom LM.
"""
from typing import Dict, Iterator, List, Tuple

import datasets
from datasets.download.download_manager import DownloadManager

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks

_CITATION = r"""
@inproceedings{leong-etal-2022-bloom,
    title = "Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks",
    author = "Leong, Colin  and
      Nemecek, Joshua  and
      Mansdorfer, Jacob  and
      Filighera, Anna  and
      Owodunni, Abraham  and
      Whitenack, Daniel",
    editor = "Goldberg, Yoav  and
      Kozareva, Zornitsa  and
      Zhang, Yue",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.emnlp-main.590",
    doi = "10.18653/v1/2022.emnlp-main.590",
    pages = "8608--8621",
}
"""

logger = datasets.logging.get_logger(__name__)

# this config is created for SEACrowd Dataloader
_LANG_CONFIG = {
    "abc": "Ambala Ayta",
    "ahk": "Akha",
    "bfn": "Bunak",
    "bjn": "Banjar",
    "bkx": "Baikeno",
    "brb": "Brao",
    "brv": "Western Bru",
    "bya": "Batak",
    "bzi": "Bisu",
    "ceb": "Cebuano",
    "cgc": "Kagayanen",
    "cmo": "Central Mnong",
    "ddg": "Fataluku",
    "dmg": "Upper Kinabatangan",
    "dnw": "Western Dani",
    "dtp": "Kadazan Dusun",
    "dtr": "Lotud",
    "enc": "En",
    "fil": "Filipino",
    "gal": "Galolen",
    "hil": "Hiligaynon",
    "hre": "Hre",
    "hro": "Haroi",
    "idt": "Idaté",
    "ilo": "Ilocano",
    "ind": "Indonesian",
    "jra": "Jarai",
    "kak": "Kalanguya",
    "khb": "Lü",
    "khm": "Khmer",
    "kqr": "Kimaragang",
    "krr": "Krung",
    "ksw": "S’gaw Karen",
    "kvt": "Lahta",
    "lao": "Lao",
    "lhu": "Lahu",
    "llg": "Lole",
    "lsi": "Lacid",
    "lwl": "Eastern Lawa",
    "mdr": "Mandar",
    "mgm": "Mambae",
    "mhx": "Lhao Vo",
    "mkz": "Makasae",
    "mnw": "Mon",
    "mqj": "Mamasa",
    "mry": "Mandaya",
    "msb": "Masbatenyo",
    "mya": "Burmese",
    "nod": "Northern Thai",
    "nst": "Tangshang Naga",
    "nxa": "Nauete",
    "nxl": "South Nuaulu",
    "pag": "Pangasinan",
    "pce": "Ruching Palaung",
    "pdu": "Kayan",
    "pea": "Peranakan Indonesian",
    "pmf": "Pamona",
    "psp_ceb": "Filipino Sign Language",
    "sea": "Semai",
    "sgd": "Surigaonon",
    "shn": "Shan",
    "sml": "Central Sama",
    "snl": "Sangil",
    "tdt": "Tetun Dili",
    "tet": "Tetun",
    "tha": "Thai",
    "tkd": "Tukudede",
    "tnt": "Tontemboan",
    "tom": "Tombulu",
    "tpu": "Tampuan",
    "vie": "Vietnamese",
    "war": "Waray-Waray",
    "wms": "Wambon",
    "wnk": "Wanukaka",
    "xmm": "Manado Malay",
    "yet": "Yetfa",
    "yin": "Riang Lai",
    "zlm": "Malay",
}

_LOCAL = False
_LANGUAGES = list(_LANG_CONFIG.keys())

_DATASETNAME = "bloom_lm"
_DESCRIPTION = r"""
This is a Bloom Library dataset developed for the self-supervised language modeling task.
It covers 74 languages indigenous to SEA overall, amounting to total data of 21K.
This dataset belongs to a CC license, where its datapoints has specific license attached to it.
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/sil-ai/bloom-lm and use huggingface-cli login for authentication.
"""

_HOMEPAGE = "https://huggingface.co/datasets/sil-ai/bloom-lm"
_LICENSE = Licenses.CC.value

_URL = "https://huggingface.co/datasets/sil-ai/bloom-lm"
_HF_REMOTE_REF = "/".join(_URL.split("/")[-2:])

_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "0.1.0"
_SEACROWD_VERSION = "2024.06.20"

CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]


def construct_configs_on_langs() -> List[SEACrowdConfig]:
    """
    The function `construct_configs` constructs a list of SEACrowdConfig objects based on `_LANGUAGES` var, and returns the list.

    output:
        a list of `SEACrowdConfig` objects based on instantiated init variables
    """

    # set output var
    config_list = []

    # construct zipped arg for config instantiation
    TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK))

    # implement source schema
    version, config_name_prefix = _SOURCE_VERSION, "source"
    config_list += [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}",
            version=datasets.Version(version),
            description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}",
            schema=f"{config_name_prefix}",
            # since the actual subset_id in source for "psp_ceb" is "psp", we are defining the subset_id as following for loading to source HF
            subset_id=_LANG if _LANG != "psp_ceb" else "psp",
        )
        for _LANG in _LANGUAGES
    ]

    # implement SEACrowd schema
    version, config_name_prefix = _SEACROWD_VERSION, "seacrowd"
    for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS:
        config_list += [
            SEACrowdConfig(
                name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}",
                version=datasets.Version(version),
                description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}",
                schema=f"{config_name_prefix}_{config_name_suffix}",
                # since the actual subset_id in source for "psp_ceb" is "psp", we are defining the subset_id as following for loading to source HF
                subset_id=_LANG if _LANG != "psp_ceb" else "psp",
            )
            for _LANG in _LANGUAGES
        ]
    return config_list


class BloomLMDataset(datasets.GeneratorBasedBuilder):
    """Bloom LM dataset, subsetted from https://huggingface.co/datasets/sil-ai/bloom-lm"""

    # get all schema w/o lang arg + get all schema w/ lang arg
    BUILDER_CONFIGS = construct_configs_on_langs()

    def _info(self) -> datasets.DatasetInfo:
        _config_schema_name = self.config.schema
        logger.info(f"Received schema name: {self.config.schema}")
        # source schema
        if _config_schema_name == "source":
            features = datasets.Features(
                {
                    "text": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "license": datasets.Value("string"),
                    "copyright": datasets.Value("string"),
                    "pageCount": datasets.Value("int32"),
                    "bookInstanceId": datasets.Value("string"),
                    "bookLineage": datasets.Value("string"),
                }
            )

        # ssp schema
        elif _config_schema_name == "seacrowd_ssp":
            features = schemas.ssp_features

        else:
            raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
        hf_dset_dict = datasets.load_dataset(_HF_REMOTE_REF, self.config.subset_id)

        return [datasets.SplitGenerator(name=datasets.Split(dset_key), gen_kwargs={"hf_dset": dset}) for dset_key, dset in hf_dset_dict.items() if dset.num_rows > 0]

    def _generate_examples(self, hf_dset) -> Iterator[Tuple[int, Dict]]:
        _config_schema_name = self.config.schema

        _idx = 0
        for datapoints in hf_dset:
            # the `_idx` will be generated manually since no `id` present in the dataset fulfill the purpose as primary key
            if _config_schema_name == "source":
                yield _idx, {colname: datapoints[colname] for colname in self.info.features}

            elif _config_schema_name == "seacrowd_ssp":
                yield _idx, {"id": _idx, "text": datapoints["text"]}

            else:
                raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")

            _idx += 1