File size: 8,435 Bytes
b5cb176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
"""
SEA Crowd Data Loader for Bloom LM.
"""
from typing import Dict, Iterator, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = r"""
@inproceedings{leong-etal-2022-bloom,
title = "Bloom Library: Multimodal Datasets in 300+ Languages for a Variety of Downstream Tasks",
author = "Leong, Colin and
Nemecek, Joshua and
Mansdorfer, Jacob and
Filighera, Anna and
Owodunni, Abraham and
Whitenack, Daniel",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.590",
doi = "10.18653/v1/2022.emnlp-main.590",
pages = "8608--8621",
}
"""
logger = datasets.logging.get_logger(__name__)
# this config is created for SEACrowd Dataloader
_LANG_CONFIG = {
"abc": "Ambala Ayta",
"ahk": "Akha",
"bfn": "Bunak",
"bjn": "Banjar",
"bkx": "Baikeno",
"brb": "Brao",
"brv": "Western Bru",
"bya": "Batak",
"bzi": "Bisu",
"ceb": "Cebuano",
"cgc": "Kagayanen",
"cmo": "Central Mnong",
"ddg": "Fataluku",
"dmg": "Upper Kinabatangan",
"dnw": "Western Dani",
"dtp": "Kadazan Dusun",
"dtr": "Lotud",
"enc": "En",
"fil": "Filipino",
"gal": "Galolen",
"hil": "Hiligaynon",
"hre": "Hre",
"hro": "Haroi",
"idt": "Idaté",
"ilo": "Ilocano",
"ind": "Indonesian",
"jra": "Jarai",
"kak": "Kalanguya",
"khb": "Lü",
"khm": "Khmer",
"kqr": "Kimaragang",
"krr": "Krung",
"ksw": "S’gaw Karen",
"kvt": "Lahta",
"lao": "Lao",
"lhu": "Lahu",
"llg": "Lole",
"lsi": "Lacid",
"lwl": "Eastern Lawa",
"mdr": "Mandar",
"mgm": "Mambae",
"mhx": "Lhao Vo",
"mkz": "Makasae",
"mnw": "Mon",
"mqj": "Mamasa",
"mry": "Mandaya",
"msb": "Masbatenyo",
"mya": "Burmese",
"nod": "Northern Thai",
"nst": "Tangshang Naga",
"nxa": "Nauete",
"nxl": "South Nuaulu",
"pag": "Pangasinan",
"pce": "Ruching Palaung",
"pdu": "Kayan",
"pea": "Peranakan Indonesian",
"pmf": "Pamona",
"psp_ceb": "Filipino Sign Language",
"sea": "Semai",
"sgd": "Surigaonon",
"shn": "Shan",
"sml": "Central Sama",
"snl": "Sangil",
"tdt": "Tetun Dili",
"tet": "Tetun",
"tha": "Thai",
"tkd": "Tukudede",
"tnt": "Tontemboan",
"tom": "Tombulu",
"tpu": "Tampuan",
"vie": "Vietnamese",
"war": "Waray-Waray",
"wms": "Wambon",
"wnk": "Wanukaka",
"xmm": "Manado Malay",
"yet": "Yetfa",
"yin": "Riang Lai",
"zlm": "Malay",
}
_LOCAL = False
_LANGUAGES = list(_LANG_CONFIG.keys())
_DATASETNAME = "bloom_lm"
_DESCRIPTION = r"""
This is a Bloom Library dataset developed for the self-supervised language modeling task.
It covers 74 languages indigenous to SEA overall, amounting to total data of 21K.
This dataset belongs to a CC license, where its datapoints has specific license attached to it.
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/sil-ai/bloom-lm and use huggingface-cli login for authentication.
"""
_HOMEPAGE = "https://huggingface.co/datasets/sil-ai/bloom-lm"
_LICENSE = Licenses.CC.value
_URL = "https://huggingface.co/datasets/sil-ai/bloom-lm"
_HF_REMOTE_REF = "/".join(_URL.split("/")[-2:])
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "0.1.0"
_SEACROWD_VERSION = "2024.06.20"
CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
def construct_configs_on_langs() -> List[SEACrowdConfig]:
"""
The function `construct_configs` constructs a list of SEACrowdConfig objects based on `_LANGUAGES` var, and returns the list.
output:
a list of `SEACrowdConfig` objects based on instantiated init variables
"""
# set output var
config_list = []
# construct zipped arg for config instantiation
TASKS_AND_CONFIG_SUFFIX_PAIRS = list(zip(_SUPPORTED_TASKS, CONFIG_SUFFIXES_FOR_TASK))
# implement source schema
version, config_name_prefix = _SOURCE_VERSION, "source"
config_list += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}",
version=datasets.Version(version),
description=f"{_DATASETNAME} {config_name_prefix} schema for language code {_LANG}",
schema=f"{config_name_prefix}",
# since the actual subset_id in source for "psp_ceb" is "psp", we are defining the subset_id as following for loading to source HF
subset_id=_LANG if _LANG != "psp_ceb" else "psp",
)
for _LANG in _LANGUAGES
]
# implement SEACrowd schema
version, config_name_prefix = _SEACROWD_VERSION, "seacrowd"
for task_obj, config_name_suffix in TASKS_AND_CONFIG_SUFFIX_PAIRS:
config_list += [
SEACrowdConfig(
name=f"{_DATASETNAME}_{_LANG}_{config_name_prefix}_{config_name_suffix}",
version=datasets.Version(version),
description=f"{_DATASETNAME} {config_name_prefix} schema for {task_obj.name} and language code {_LANG}",
schema=f"{config_name_prefix}_{config_name_suffix}",
# since the actual subset_id in source for "psp_ceb" is "psp", we are defining the subset_id as following for loading to source HF
subset_id=_LANG if _LANG != "psp_ceb" else "psp",
)
for _LANG in _LANGUAGES
]
return config_list
class BloomLMDataset(datasets.GeneratorBasedBuilder):
"""Bloom LM dataset, subsetted from https://huggingface.co/datasets/sil-ai/bloom-lm"""
# get all schema w/o lang arg + get all schema w/ lang arg
BUILDER_CONFIGS = construct_configs_on_langs()
def _info(self) -> datasets.DatasetInfo:
_config_schema_name = self.config.schema
logger.info(f"Received schema name: {self.config.schema}")
# source schema
if _config_schema_name == "source":
features = datasets.Features(
{
"text": datasets.Value("string"),
"title": datasets.Value("string"),
"license": datasets.Value("string"),
"copyright": datasets.Value("string"),
"pageCount": datasets.Value("int32"),
"bookInstanceId": datasets.Value("string"),
"bookLineage": datasets.Value("string"),
}
)
# ssp schema
elif _config_schema_name == "seacrowd_ssp":
features = schemas.ssp_features
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
hf_dset_dict = datasets.load_dataset(_HF_REMOTE_REF, self.config.subset_id)
return [datasets.SplitGenerator(name=datasets.Split(dset_key), gen_kwargs={"hf_dset": dset}) for dset_key, dset in hf_dset_dict.items() if dset.num_rows > 0]
def _generate_examples(self, hf_dset) -> Iterator[Tuple[int, Dict]]:
_config_schema_name = self.config.schema
_idx = 0
for datapoints in hf_dset:
# the `_idx` will be generated manually since no `id` present in the dataset fulfill the purpose as primary key
if _config_schema_name == "source":
yield _idx, {colname: datapoints[colname] for colname in self.info.features}
elif _config_schema_name == "seacrowd_ssp":
yield _idx, {"id": _idx, "text": datapoints["text"]}
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
_idx += 1
|