Upload casa.py with huggingface_hub
Browse files
casa.py
CHANGED
@@ -4,9 +4,9 @@ from typing import Dict, List, Tuple
|
|
4 |
import datasets
|
5 |
import pandas as pd
|
6 |
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
|
11 |
_CITATION = """
|
12 |
@INPROCEEDINGS{8629181,
|
@@ -47,28 +47,28 @@ _SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
|
|
47 |
|
48 |
_SOURCE_VERSION = "1.0.0"
|
49 |
|
50 |
-
|
51 |
|
52 |
|
53 |
class CASA(datasets.GeneratorBasedBuilder):
|
54 |
"""CASA is an aspect based sentiment analysis dataset"""
|
55 |
|
56 |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
57 |
-
|
58 |
|
59 |
BUILDER_CONFIGS = [
|
60 |
-
|
61 |
name="casa_source",
|
62 |
version=SOURCE_VERSION,
|
63 |
description="CASA source schema",
|
64 |
schema="source",
|
65 |
subset_id="casa",
|
66 |
),
|
67 |
-
|
68 |
-
name="
|
69 |
-
version=
|
70 |
description="CASA Nusantara schema",
|
71 |
-
schema="
|
72 |
subset_id="casa",
|
73 |
),
|
74 |
]
|
@@ -90,7 +90,7 @@ class CASA(datasets.GeneratorBasedBuilder):
|
|
90 |
}
|
91 |
)
|
92 |
|
93 |
-
elif self.config.schema == "
|
94 |
features = schemas.text_multi_features(["positive", "neutral", "negative"])
|
95 |
|
96 |
return datasets.DatasetInfo(
|
@@ -144,7 +144,7 @@ class CASA(datasets.GeneratorBasedBuilder):
|
|
144 |
entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service}
|
145 |
yield row.index, entry
|
146 |
|
147 |
-
elif self.config.schema == "
|
148 |
for row in df.itertuples():
|
149 |
entry = {
|
150 |
"id": str(row.index),
|
|
|
4 |
import datasets
|
5 |
import pandas as pd
|
6 |
|
7 |
+
from seacrowd.utils import schemas
|
8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
9 |
+
from seacrowd.utils.constants import Tasks
|
10 |
|
11 |
_CITATION = """
|
12 |
@INPROCEEDINGS{8629181,
|
|
|
47 |
|
48 |
_SOURCE_VERSION = "1.0.0"
|
49 |
|
50 |
+
_SEACROWD_VERSION = "2024.06.20"
|
51 |
|
52 |
|
53 |
class CASA(datasets.GeneratorBasedBuilder):
|
54 |
"""CASA is an aspect based sentiment analysis dataset"""
|
55 |
|
56 |
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
57 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
58 |
|
59 |
BUILDER_CONFIGS = [
|
60 |
+
SEACrowdConfig(
|
61 |
name="casa_source",
|
62 |
version=SOURCE_VERSION,
|
63 |
description="CASA source schema",
|
64 |
schema="source",
|
65 |
subset_id="casa",
|
66 |
),
|
67 |
+
SEACrowdConfig(
|
68 |
+
name="casa_seacrowd_text_multi",
|
69 |
+
version=SEACROWD_VERSION,
|
70 |
description="CASA Nusantara schema",
|
71 |
+
schema="seacrowd_text_multi",
|
72 |
subset_id="casa",
|
73 |
),
|
74 |
]
|
|
|
90 |
}
|
91 |
)
|
92 |
|
93 |
+
elif self.config.schema == "seacrowd_text_multi":
|
94 |
features = schemas.text_multi_features(["positive", "neutral", "negative"])
|
95 |
|
96 |
return datasets.DatasetInfo(
|
|
|
144 |
entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service}
|
145 |
yield row.index, entry
|
146 |
|
147 |
+
elif self.config.schema == "seacrowd_text_multi":
|
148 |
for row in df.itertuples():
|
149 |
entry = {
|
150 |
"id": str(row.index),
|