Commit
·
5b42e20
1
Parent(s):
5ba0b83
Upload casa.py with huggingface_hub
Browse files
casa.py
ADDED
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from typing import Dict, List, Tuple
|
3 |
+
|
4 |
+
import datasets
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
from nusacrowd.utils import schemas
|
8 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
9 |
+
from nusacrowd.utils.constants import Tasks
|
10 |
+
|
11 |
+
_CITATION = """
|
12 |
+
@INPROCEEDINGS{8629181,
|
13 |
+
author={Ilmania, Arfinda and Abdurrahman and Cahyawijaya, Samuel and Purwarianti, Ayu},
|
14 |
+
booktitle={2018 International Conference on Asian Language Processing (IALP)},
|
15 |
+
title={Aspect Detection and Sentiment Classification Using Deep Neural Network for Indonesian Aspect-Based Sentiment Analysis},
|
16 |
+
year={2018},
|
17 |
+
volume={},
|
18 |
+
number={},
|
19 |
+
pages={62-67},
|
20 |
+
doi={10.1109/IALP.2018.8629181
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
25 |
+
_LOCAL = False
|
26 |
+
|
27 |
+
_DATASETNAME = "casa"
|
28 |
+
|
29 |
+
_DESCRIPTION = """
|
30 |
+
CASA: An aspect-based sentiment analysis dataset consisting of around a thousand car reviews collected from multiple Indonesian online automobile platforms (Ilmania et al., 2018).
|
31 |
+
The dataset covers six aspects of car quality.
|
32 |
+
We define the task to be a multi-label classification task,
|
33 |
+
where each label represents a sentiment for a single aspect with three possible values: positive, negative, and neutral.
|
34 |
+
"""
|
35 |
+
|
36 |
+
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
|
37 |
+
|
38 |
+
_LICENSE = "CC-BY-SA 4.0"
|
39 |
+
|
40 |
+
_URLS = {
|
41 |
+
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/train_preprocess.csv",
|
42 |
+
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/valid_preprocess.csv",
|
43 |
+
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/casa_absa-prosa/test_preprocess.csv",
|
44 |
+
}
|
45 |
+
|
46 |
+
_SUPPORTED_TASKS = [Tasks.ASPECT_BASED_SENTIMENT_ANALYSIS]
|
47 |
+
|
48 |
+
_SOURCE_VERSION = "1.0.0"
|
49 |
+
|
50 |
+
_NUSANTARA_VERSION = "1.0.0"
|
51 |
+
|
52 |
+
|
53 |
+
class CASA(datasets.GeneratorBasedBuilder):
|
54 |
+
"""CASA is an aspect based sentiment analysis dataset"""
|
55 |
+
|
56 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
57 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
58 |
+
|
59 |
+
BUILDER_CONFIGS = [
|
60 |
+
NusantaraConfig(
|
61 |
+
name="casa_source",
|
62 |
+
version=SOURCE_VERSION,
|
63 |
+
description="CASA source schema",
|
64 |
+
schema="source",
|
65 |
+
subset_id="casa",
|
66 |
+
),
|
67 |
+
NusantaraConfig(
|
68 |
+
name="casa_nusantara_text_multi",
|
69 |
+
version=NUSANTARA_VERSION,
|
70 |
+
description="CASA Nusantara schema",
|
71 |
+
schema="nusantara_text_multi",
|
72 |
+
subset_id="casa",
|
73 |
+
),
|
74 |
+
]
|
75 |
+
|
76 |
+
DEFAULT_CONFIG_NAME = "casa_source"
|
77 |
+
|
78 |
+
def _info(self) -> datasets.DatasetInfo:
|
79 |
+
if self.config.schema == "source":
|
80 |
+
features = datasets.Features(
|
81 |
+
{
|
82 |
+
"index": datasets.Value("int64"),
|
83 |
+
"sentence": datasets.Value("string"),
|
84 |
+
"fuel": datasets.Value("string"),
|
85 |
+
"machine": datasets.Value("string"),
|
86 |
+
"others": datasets.Value("string"),
|
87 |
+
"part": datasets.Value("string"),
|
88 |
+
"price": datasets.Value("string"),
|
89 |
+
"service": datasets.Value("string"),
|
90 |
+
}
|
91 |
+
)
|
92 |
+
|
93 |
+
elif self.config.schema == "nusantara_text_multi":
|
94 |
+
features = schemas.text_multi_features(["positive", "neutral", "negative"])
|
95 |
+
|
96 |
+
return datasets.DatasetInfo(
|
97 |
+
description=_DESCRIPTION,
|
98 |
+
features=features,
|
99 |
+
homepage=_HOMEPAGE,
|
100 |
+
license=_LICENSE,
|
101 |
+
citation=_CITATION,
|
102 |
+
)
|
103 |
+
|
104 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
105 |
+
train_csv_path = Path(dl_manager.download_and_extract(_URLS["train"]))
|
106 |
+
validation_csv_path = Path(dl_manager.download_and_extract(_URLS["validation"]))
|
107 |
+
test_csv_path = Path(dl_manager.download_and_extract(_URLS["test"]))
|
108 |
+
|
109 |
+
data_dir = {
|
110 |
+
"train": train_csv_path,
|
111 |
+
"validation": validation_csv_path,
|
112 |
+
"test": test_csv_path,
|
113 |
+
}
|
114 |
+
|
115 |
+
return [
|
116 |
+
datasets.SplitGenerator(
|
117 |
+
name=datasets.Split.TRAIN,
|
118 |
+
gen_kwargs={
|
119 |
+
"filepath": data_dir["train"],
|
120 |
+
"split": "train",
|
121 |
+
},
|
122 |
+
),
|
123 |
+
datasets.SplitGenerator(
|
124 |
+
name=datasets.Split.TEST,
|
125 |
+
gen_kwargs={
|
126 |
+
"filepath": data_dir["test"],
|
127 |
+
"split": "test",
|
128 |
+
},
|
129 |
+
),
|
130 |
+
datasets.SplitGenerator(
|
131 |
+
name=datasets.Split.VALIDATION,
|
132 |
+
gen_kwargs={
|
133 |
+
"filepath": data_dir["validation"],
|
134 |
+
"split": "dev",
|
135 |
+
},
|
136 |
+
),
|
137 |
+
]
|
138 |
+
|
139 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
140 |
+
"""Yields examples as (key, example) tuples."""
|
141 |
+
df = pd.read_csv(filepath, sep=",", header="infer").reset_index()
|
142 |
+
if self.config.schema == "source":
|
143 |
+
for row in df.itertuples():
|
144 |
+
entry = {"index": row.index, "sentence": row.sentence, "fuel": row.fuel, "machine": row.machine, "others": row.others, "part": row.part, "price": row.price, "service": row.service}
|
145 |
+
yield row.index, entry
|
146 |
+
|
147 |
+
elif self.config.schema == "nusantara_text_multi":
|
148 |
+
for row in df.itertuples():
|
149 |
+
entry = {
|
150 |
+
"id": str(row.index),
|
151 |
+
"text": row.sentence,
|
152 |
+
"labels": [label for label in row[3:]],
|
153 |
+
}
|
154 |
+
yield row.index, entry
|