File size: 6,235 Bytes
0d43453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@inproceedings{elkishky_ccaligned_2020,
    author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Koehn, Philipp},
    booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},
    month = {November},
    title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},
    year = {2020}
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.emnlp-main.480",
    doi = "10.18653/v1/2020.emnlp-main.480",
    pages = "5960--5969"
}
"""

_DATASETNAME = "cc_aligned_doc"

_DESCRIPTION = """\
CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English\
(10 languages are from Southeast Asia; Burmese has two document collection with different scripts).\
These web-document pairs were constructed by performing language identification on raw web-documents, \
and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern \
matching approach yielded more than 100 million aligned documents paired with English.
"""

_HOMEPAGE = "https://www2.statmt.org/cc-aligned/"

_LANGUAGES = ["ind", "sun", "tha", "vie", "zlm", "lao", "khm", "mya", "ceb", "war"]

_LICENSE = Licenses.UNKNOWN.value

_LOCAL = False
_SUBSETS = {"id_ID": "ind", "su_ID": "sun", "th_TH": "tha", "vi_VN": "vie", "ms_MY": "zlm", "lo_LA": "lao", "km_KH": "khm", "my_MM": "mya", "my_MM_zaw": "mya", "cx_PH": "ceb", "wy_PH": "war"}
_URLS = {_DATASETNAME: "https://data.statmt.org/cc-aligned/en_XX-{subset}.tsv.xz"}

_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class CCAlignedDocDataset(datasets.GeneratorBasedBuilder):

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
    SEACROWD_SCHEMA_NAME = "t2t"

    BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{subset}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}",) for subset in _SUBSETS.keys()] + [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_{subset}_seacrowd_{schema_name}",
            version=datasets.Version(_SEACROWD_VERSION),
            description=f"{_DATASETNAME} SEACrowd schema",
            schema=f"seacrowd_{schema_name}",
            subset_id=f"{_DATASETNAME}",
        )
        for subset, schema_name in zip(_SUBSETS.keys(), len(_SUBSETS.keys()) * [SEACROWD_SCHEMA_NAME])
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_id_ID_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "Domain": datasets.Value("string"),
                    "Source_URL": datasets.Value("string"),
                    "Source_Content": datasets.Value("string"),
                    "Target_URL": datasets.Value("string"),
                    "Target_Content": datasets.Value("string"),
                }
            )
        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        subset = "_".join([self.config.name.split("_")[3], self.config.name.split("_")[4]])
        urls = _URLS[_DATASETNAME].format(subset=subset)
        data_dir = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            )
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        """Yields examples as (key, example) tuples."""
        subset = "_".join([self.config.name.split("_")[3], self.config.name.split("_")[4]])
        lines = open(filepath, "r").readlines()
        if self.config.schema == "source":
            idx = 0
            for line in lines:
                content = line.split("\t")
                example = {
                    "Domain": content[0],
                    "Source_URL": content[1],
                    "Source_Content": content[2],
                    "Target_URL": content[3],
                    "Target_Content": content[4],
                }
                yield idx, example
                idx += 1
        elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
            idx = 0
            for line in lines:
                content = line.split("\t")
                example = {
                    "id": str(idx),
                    "text_1": content[2],
                    "text_2": content[4],
                    "text_1_name": "en",
                    "text_2_name": _SUBSETS[subset],
                }
                yield idx, example
                idx += 1