File size: 6,235 Bytes
0d43453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@inproceedings{elkishky_ccaligned_2020,
author = {El-Kishky, Ahmed and Chaudhary, Vishrav and Guzm{\'a}n, Francisco and Koehn, Philipp},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020)},
month = {November},
title = {{CCAligned}: A Massive Collection of Cross-lingual Web-Document Pairs},
year = {2020}
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-main.480",
doi = "10.18653/v1/2020.emnlp-main.480",
pages = "5960--5969"
}
"""
_DATASETNAME = "cc_aligned_doc"
_DESCRIPTION = """\
CCAligned consists of parallel or comparable web-document pairs in 137 languages aligned with English\
(10 languages are from Southeast Asia; Burmese has two document collection with different scripts).\
These web-document pairs were constructed by performing language identification on raw web-documents, \
and ensuring corresponding language codes were corresponding in the URLs of web documents. This pattern \
matching approach yielded more than 100 million aligned documents paired with English.
"""
_HOMEPAGE = "https://www2.statmt.org/cc-aligned/"
_LANGUAGES = ["ind", "sun", "tha", "vie", "zlm", "lao", "khm", "mya", "ceb", "war"]
_LICENSE = Licenses.UNKNOWN.value
_LOCAL = False
_SUBSETS = {"id_ID": "ind", "su_ID": "sun", "th_TH": "tha", "vi_VN": "vie", "ms_MY": "zlm", "lo_LA": "lao", "km_KH": "khm", "my_MM": "mya", "my_MM_zaw": "mya", "cx_PH": "ceb", "wy_PH": "war"}
_URLS = {_DATASETNAME: "https://data.statmt.org/cc-aligned/en_XX-{subset}.tsv.xz"}
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class CCAlignedDocDataset(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
BUILDER_CONFIGS = [SEACrowdConfig(name=f"{_DATASETNAME}_{subset}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}",) for subset in _SUBSETS.keys()] + [
SEACrowdConfig(
name=f"{_DATASETNAME}_{subset}_seacrowd_{schema_name}",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{schema_name}",
subset_id=f"{_DATASETNAME}",
)
for subset, schema_name in zip(_SUBSETS.keys(), len(_SUBSETS.keys()) * [SEACROWD_SCHEMA_NAME])
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_id_ID_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"Domain": datasets.Value("string"),
"Source_URL": datasets.Value("string"),
"Source_Content": datasets.Value("string"),
"Target_URL": datasets.Value("string"),
"Target_Content": datasets.Value("string"),
}
)
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
subset = "_".join([self.config.name.split("_")[3], self.config.name.split("_")[4]])
urls = _URLS[_DATASETNAME].format(subset=subset)
data_dir = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"split": "train",
},
)
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
subset = "_".join([self.config.name.split("_")[3], self.config.name.split("_")[4]])
lines = open(filepath, "r").readlines()
if self.config.schema == "source":
idx = 0
for line in lines:
content = line.split("\t")
example = {
"Domain": content[0],
"Source_URL": content[1],
"Source_Content": content[2],
"Target_URL": content[3],
"Target_Content": content[4],
}
yield idx, example
idx += 1
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
idx = 0
for line in lines:
content = line.split("\t")
example = {
"id": str(idx),
"text_1": content[2],
"text_2": content[4],
"text_1_name": "en",
"text_2_name": _SUBSETS[subset],
}
yield idx, example
idx += 1
|