File size: 6,261 Bytes
93f9a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = r"""
@inproceedings{chaudhary-etal-2019-low,
title = "Low-Resource Corpus Filtering Using Multilingual Sentence Embeddings",
author = "Chaudhary, Vishrav and
Tang, Yuqing and
Guzm{\'a}n, Francisco and
Schwenk, Holger and
Koehn, Philipp",
editor = "Bojar, Ond{\v{r}}ej and
Chatterjee, Rajen and
Federmann, Christian and
Fishel, Mark and
Graham, Yvette and
Haddow, Barry and
Huck, Matthias and
Yepes, Antonio Jimeno and
Koehn, Philipp and
Martins, Andr{\'e} and
Monz, Christof and
Negri, Matteo and
N{\'e}v{\'e}ol, Aur{\'e}lie and
Neves, Mariana and
Post, Matt and
Turchi, Marco and
Verspoor, Karin",
booktitle = "Proceedings of the Fourth Conference on Machine Translation (Volume 3: Shared Task Papers, Day 2)",
month = aug,
year = "2019",
address = "Florence, Italy",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W19-5435",
doi = "10.18653/v1/W19-5435",
pages = "261--266",
}
"""
_LOCAL = False
_LANGUAGES = ["ind", "jav", "sun", "tha", "vie", "zlm", "lao", "khm", "mya", "ceb"]
_DATASETNAME = "cc_aligned_sent"
_DESCRIPTION = """\
This dataset contains the sentence pairs extracted from CC-Aligned document
pairs using similarity scores of LASER embeddings (minimum similarity 1.04,
sorted based on decreasing similarity score). It misses some languages not
covered by LASER.
"""
_HOMEPAGE = "https://www2.statmt.org/cc-aligned/"
_LICENSE = Licenses.UNKNOWN.value
_URL = "https://data.statmt.org/cc-aligned/sentence-aligned/"
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_SUBSETS = ["id_ID", "jv_ID", "su_ID", "th_TH", "vi_VN", "ms_MY", "lo_LA", "km_KH", "my_MM", "cx_PH"]
class CCAlignedSentencesDataset(datasets.GeneratorBasedBuilder):
"""CC Aligned Sentences dataset by Chaudhary et al., (2019)"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
SEACROWD_SCHEMA_NAME = "t2t"
# Add configurations for loading a dataset per language.
dataset_names = sorted([f"{_DATASETNAME}_{subset}" for subset in _SUBSETS])
BUILDER_CONFIGS = []
for name in dataset_names:
source_config = SEACrowdConfig(
name=f"{name}_source",
version=SOURCE_VERSION,
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=name,
)
BUILDER_CONFIGS.append(source_config)
seacrowd_config = SEACrowdConfig(
name=f"{name}_seacrowd_{SEACROWD_SCHEMA_NAME}",
version=SEACROWD_VERSION,
description=f"{_DATASETNAME} SEACrowd schema",
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
subset_id=name,
)
BUILDER_CONFIGS.append(seacrowd_config)
# Choose first language as default
first_subset = sorted(_SUBSETS)[0]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{first_subset}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"Source_Sentence": datasets.Value("string"),
"Target_Sentence": datasets.Value("string"),
"LASER_similarity": datasets.Value("float64"),
}
)
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
features = schemas.text_to_text.features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
"""Return SplitGenerators."""
# Define some functions for parsing config and URL names
def _split_at_n(text: str, n: int) -> Tuple[str, str]:
"""Split text on the n-th instance"""
return ("_".join(text.split("_")[:n]), "_".join(text.split("_")[n:]))
# Get URL. For cx_PH, the source and target languages are reversed
_, subset = _split_at_n(_split_at_n(self.config.name, 5)[0], 3)
(source_lang, target_lang) = (subset, "en_XX") if subset == "cx_PH" else ("en_XX", subset)
url = _URL + f"{source_lang}-{target_lang}.tsv.xz"
filepath = dl_manager.download_and_extract(url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": filepath,
"source_lang": source_lang,
"target_lang": target_lang,
},
)
]
def _generate_examples(self, filepath: Path, source_lang: str, target_lang: str) -> Tuple[int, Dict]:
"""Yield examples as (key, example) tuples"""
with open(filepath, encoding="utf-8") as file:
for idx, row in enumerate(file):
text_1, text_2, score = row.strip().split("\t")
if self.config.schema == "source":
example = {
"id": idx,
"Source_Sentence": text_1,
"Target_Sentence": text_2,
"LASER_similarity": float(score),
}
if self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
example = {
"id": idx,
"text_1": text_1,
"text_2": text_2,
"text_1_name": source_lang,
"text_2_name": target_lang,
}
yield idx, example
|