Datasets:

Languages:
Indonesian
ArXiv:
holylovenia commited on
Commit
452a727
·
verified ·
1 Parent(s): a3d3de3

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +53 -20
README.md CHANGED
@@ -1,27 +1,62 @@
 
1
  ---
2
- license: unknown
3
- tags:
4
- - dialogue-system
5
- language:
6
  - ind
 
 
 
 
 
7
  ---
8
 
9
- # cod
10
-
11
  Cross-lingual Outline-based Dialogue (COD) is a dataset comprised of manually generated, localized, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data that served as the source of dialogue prompts.
12
-
13
  COD enables natural language understanding, dialogue state tracking, and end-to-end dialogue modeling and evaluation.
14
-
15
  Majewska et al. (2022) create COD using a novel outline-based annotation pipeline for multilingual TOD by Majewska et al. (2022).
16
-
17
  English Schema-Guided Dialogue (SGD; Shah et al., 2018; Rastogi et al., 2020) dataset is automatically sampled and mapped into outlines. The outlines are then paraphrased and adapted to the local target domain by human subjects.
18
 
 
 
 
 
 
 
 
 
 
19
  ## Dataset Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- Run `pip install nusacrowd` before loading the dataset through HuggingFace's `load_dataset`.
 
 
 
 
 
 
 
 
 
 
22
 
23
  ## Citation
24
 
 
25
  ```
26
  @article{majewska2022cross,
27
  title={Cross-lingual dialogue dataset creation via outline-based generation},
@@ -29,16 +64,14 @@ Run `pip install nusacrowd` before loading the dataset through HuggingFace's `lo
29
  journal={arXiv preprint arXiv:2201.13405},
30
  year={2022}
31
  }
32
- ```
33
-
34
- ## License
35
-
36
- Unknown
37
 
38
- ## Homepage
39
 
40
- [https://github.com/cambridgeltl/COD](https://github.com/cambridgeltl/COD)
41
-
42
- ### NusaCatalogue
 
 
 
 
43
 
44
- For easy indexing and metadata: [https://indonlp.github.io/nusa-catalogue](https://indonlp.github.io/nusa-catalogue)
 
1
+
2
  ---
3
+ language:
 
 
 
4
  - ind
5
+ pretty_name: Cod
6
+ task_categories:
7
+ - dialogue-system
8
+ tags:
9
+ - dialogue-system
10
  ---
11
 
 
 
12
  Cross-lingual Outline-based Dialogue (COD) is a dataset comprised of manually generated, localized, and cross-lingually aligned Task-Oriented-Dialogue (TOD) data that served as the source of dialogue prompts.
 
13
  COD enables natural language understanding, dialogue state tracking, and end-to-end dialogue modeling and evaluation.
 
14
  Majewska et al. (2022) create COD using a novel outline-based annotation pipeline for multilingual TOD by Majewska et al. (2022).
 
15
  English Schema-Guided Dialogue (SGD; Shah et al., 2018; Rastogi et al., 2020) dataset is automatically sampled and mapped into outlines. The outlines are then paraphrased and adapted to the local target domain by human subjects.
16
 
17
+
18
+ ## Languages
19
+
20
+ ind
21
+
22
+ ## Supported Tasks
23
+
24
+ Dialogue System
25
+
26
  ## Dataset Usage
27
+ ### Using `datasets` library
28
+ ```
29
+ from datasets import load_dataset
30
+ dset = datasets.load_dataset("SEACrowd/cod", trust_remote_code=True)
31
+ ```
32
+ ### Using `seacrowd` library
33
+ ```import seacrowd as sc
34
+ # Load the dataset using the default config
35
+ dset = sc.load_dataset("cod", schema="seacrowd")
36
+ # Check all available subsets (config names) of the dataset
37
+ print(sc.available_config_names("cod"))
38
+ # Load the dataset using a specific config
39
+ dset = sc.load_dataset_by_config_name(config_name="<config_name>")
40
+ ```
41
+
42
+ More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
43
+
44
 
45
+ ## Dataset Homepage
46
+
47
+ [https://github.com/cambridgeltl/COD](https://github.com/cambridgeltl/COD)
48
+
49
+ ## Dataset Version
50
+
51
+ Source: 1.0.0. SEACrowd: 2024.06.20.
52
+
53
+ ## Dataset License
54
+
55
+ Unknown
56
 
57
  ## Citation
58
 
59
+ If you are using the **Cod** dataloader in your work, please cite the following:
60
  ```
61
  @article{majewska2022cross,
62
  title={Cross-lingual dialogue dataset creation via outline-based generation},
 
64
  journal={arXiv preprint arXiv:2201.13405},
65
  year={2022}
66
  }
 
 
 
 
 
67
 
 
68
 
69
+ @article{lovenia2024seacrowd,
70
+ title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
71
+ author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
72
+ year={2024},
73
+ eprint={2406.10118},
74
+ journal={arXiv preprint arXiv: 2406.10118}
75
+ }
76
 
77
+ ```