Datasets:
holylovenia
commited on
Commit
•
cf15793
1
Parent(s):
ac273f7
Upload commonvoice_120.py with huggingface_hub
Browse files- commonvoice_120.py +208 -0
commonvoice_120.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
import csv
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Dict, List, Tuple
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
from seacrowd.utils import schemas
|
11 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
12 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
13 |
+
|
14 |
+
_CITATION = """\
|
15 |
+
@inproceedings{commonvoice:2020,
|
16 |
+
author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
|
17 |
+
title = {Common Voice: A Massively-Multilingual Speech Corpus},
|
18 |
+
booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
|
19 |
+
pages = {4211--4215},
|
20 |
+
year = 2020
|
21 |
+
}
|
22 |
+
"""
|
23 |
+
|
24 |
+
_DATASETNAME = "commonvoice_120"
|
25 |
+
|
26 |
+
_DESCRIPTION = """\
|
27 |
+
The Common Mozilla Voice dataset consists of a unique MP3 and corresponding text file.
|
28 |
+
Many of the 26119 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help improve the accuracy of speech recognition engines.
|
29 |
+
The dataset currently consists of 17127 validated hours in 104 languages, but more voices and languages are always added.
|
30 |
+
|
31 |
+
Before using this dataloader, please accept the acknowledgement at https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0 and use huggingface-cli login for authentication
|
32 |
+
"""
|
33 |
+
|
34 |
+
_HOMEPAGE = "https://commonvoice.mozilla.org/en/datasets"
|
35 |
+
|
36 |
+
_LANGUAGES = ["cnh", "ind", "tha", "vie"]
|
37 |
+
_LANG_TO_CVLANG = {"cnh": "cnh", "ind": "id", "tha": "th", "vie": "vi"}
|
38 |
+
|
39 |
+
_AGE_TO_INT = {"": None, "teens": 10, "twenties": 20, "thirties": 30, "fourties": 40, "fifties": 50, "sixties": 60, "seventies": 70, "eighties": 80}
|
40 |
+
|
41 |
+
_LICENSE = Licenses.CC0_1_0.value
|
42 |
+
|
43 |
+
# Note: the dataset is gated in HuggingFace. It's public after providing access token
|
44 |
+
_LOCAL = False
|
45 |
+
|
46 |
+
_COMMONVOICE_URL_TEMPLATE = "https://huggingface.co/datasets/mozilla-foundation/common_voice_12_0/resolve/main/"
|
47 |
+
_URLS = {"audio": _COMMONVOICE_URL_TEMPLATE + "audio/{lang}/{split}/{lang}_{split}_{shard_idx}.tar", "transcript": _COMMONVOICE_URL_TEMPLATE + "transcript/{lang}/{split}.tsv", "n_shards": _COMMONVOICE_URL_TEMPLATE + "n_shards.json"}
|
48 |
+
|
49 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION, Tasks.TEXT_TO_SPEECH]
|
50 |
+
|
51 |
+
_SOURCE_VERSION = "1.0.0"
|
52 |
+
|
53 |
+
_SEACROWD_VERSION = "2024.06.20"
|
54 |
+
|
55 |
+
|
56 |
+
class Commonvoice120(datasets.GeneratorBasedBuilder):
|
57 |
+
"""This is the dataloader for CommonVoice 12.0 Mozilla"""
|
58 |
+
|
59 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
60 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
61 |
+
|
62 |
+
BUILDER_CONFIGS = (
|
63 |
+
*[
|
64 |
+
SEACrowdConfig(
|
65 |
+
name=f"{_DATASETNAME}_{lang}{'_' if lang else ''}source",
|
66 |
+
version=datasets.Version(_SOURCE_VERSION),
|
67 |
+
description=f"{_DATASETNAME} source schema for {lang}",
|
68 |
+
schema="source",
|
69 |
+
subset_id=f"{_DATASETNAME}{'_' if lang else ''}{lang}",
|
70 |
+
)
|
71 |
+
for lang in ["", *_LANGUAGES]
|
72 |
+
],
|
73 |
+
*[
|
74 |
+
SEACrowdConfig(
|
75 |
+
name=f"{_DATASETNAME}_{lang}{'_' if lang else ''}seacrowd_sptext",
|
76 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
77 |
+
description=f"{_DATASETNAME} SEACrowd schema for {lang}",
|
78 |
+
schema="seacrowd_sptext",
|
79 |
+
subset_id=f"{_DATASETNAME}{'_' if lang else ''}{lang}",
|
80 |
+
)
|
81 |
+
for lang in ["", *_LANGUAGES]
|
82 |
+
],
|
83 |
+
)
|
84 |
+
|
85 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
86 |
+
|
87 |
+
def _info(self) -> datasets.DatasetInfo:
|
88 |
+
if self.config.schema == "source":
|
89 |
+
features = datasets.Features(
|
90 |
+
{
|
91 |
+
"client_id": datasets.Value("string"),
|
92 |
+
"path": datasets.Value("string"),
|
93 |
+
"audio": datasets.features.Audio(sampling_rate=48_000),
|
94 |
+
"sentence": datasets.Value("string"),
|
95 |
+
"up_votes": datasets.Value("int64"),
|
96 |
+
"down_votes": datasets.Value("int64"),
|
97 |
+
"age": datasets.Value("string"),
|
98 |
+
"gender": datasets.Value("string"),
|
99 |
+
"accent": datasets.Value("string"),
|
100 |
+
"locale": datasets.Value("string"),
|
101 |
+
"segment": datasets.Value("string"),
|
102 |
+
}
|
103 |
+
)
|
104 |
+
elif self.config.schema == "seacrowd_sptext":
|
105 |
+
features = schemas.speech_text_features
|
106 |
+
|
107 |
+
return datasets.DatasetInfo(
|
108 |
+
description=_DESCRIPTION,
|
109 |
+
features=features,
|
110 |
+
homepage=_HOMEPAGE,
|
111 |
+
license=_LICENSE,
|
112 |
+
citation=_CITATION,
|
113 |
+
)
|
114 |
+
|
115 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
116 |
+
lang_code = self.config.subset_id.split("_")[-1]
|
117 |
+
languages = [_LANG_TO_CVLANG.get(lang, lang) for lang in (_LANGUAGES if lang_code == "120" else [lang_code])]
|
118 |
+
n_shards_path = dl_manager.download_and_extract(_URLS["n_shards"])
|
119 |
+
with open(n_shards_path, encoding="utf-8") as f:
|
120 |
+
n_shards = json.load(f)
|
121 |
+
|
122 |
+
audio_urls = {}
|
123 |
+
meta_urls = {}
|
124 |
+
splits = ("train", "dev", "test")
|
125 |
+
for split in splits:
|
126 |
+
audio_urls[split] = [_URLS["audio"].format(lang=lang, split=split, shard_idx=i) for lang in languages for i in range(n_shards[lang][split])]
|
127 |
+
meta_urls[split] = [_URLS["transcript"].format(lang=lang, split=split) for lang in languages]
|
128 |
+
archive_paths = dl_manager.download(audio_urls)
|
129 |
+
local_extracted_archive_paths = dl_manager.extract(archive_paths)
|
130 |
+
meta_paths = dl_manager.download_and_extract(meta_urls)
|
131 |
+
|
132 |
+
split_names = {
|
133 |
+
"train": datasets.Split.TRAIN,
|
134 |
+
"dev": datasets.Split.VALIDATION,
|
135 |
+
"test": datasets.Split.TEST,
|
136 |
+
}
|
137 |
+
return [
|
138 |
+
datasets.SplitGenerator(
|
139 |
+
name=split_names.get(split, split),
|
140 |
+
gen_kwargs={
|
141 |
+
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
|
142 |
+
"audio_archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
|
143 |
+
"meta_paths": meta_paths[split],
|
144 |
+
"split": "train",
|
145 |
+
},
|
146 |
+
)
|
147 |
+
for split in splits
|
148 |
+
]
|
149 |
+
|
150 |
+
def _generate_examples(self, local_extracted_archive_paths: [Path], audio_archives: [Path], meta_paths: [Path], split: str) -> Tuple[int, Dict]:
|
151 |
+
data_fields = list(self._info().features.keys())
|
152 |
+
metadata = {}
|
153 |
+
for meta_path in meta_paths:
|
154 |
+
with open(meta_path, encoding="utf-8") as f:
|
155 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
156 |
+
for row in reader:
|
157 |
+
if not row["path"].endswith(".mp3"):
|
158 |
+
row["path"] += ".mp3"
|
159 |
+
if "accents" in row:
|
160 |
+
row["accent"] = row["accents"]
|
161 |
+
del row["accents"]
|
162 |
+
for field in data_fields:
|
163 |
+
if field not in row:
|
164 |
+
row[field] = ""
|
165 |
+
metadata[row["path"]] = row
|
166 |
+
|
167 |
+
if self.config.schema == "source":
|
168 |
+
for i, audio_archive in enumerate(audio_archives):
|
169 |
+
for path, file in audio_archive:
|
170 |
+
_, filename = os.path.split(path)
|
171 |
+
if filename in metadata:
|
172 |
+
src_result = dict(metadata[filename])
|
173 |
+
path = os.path.join(local_extracted_archive_paths[i], path)
|
174 |
+
result = {
|
175 |
+
"client_id": src_result["client_id"],
|
176 |
+
"path": path,
|
177 |
+
"audio": {"path": path, "bytes": file.read()},
|
178 |
+
"sentence": src_result["sentence"],
|
179 |
+
"up_votes": src_result["up_votes"],
|
180 |
+
"down_votes": src_result["down_votes"],
|
181 |
+
"age": src_result["age"],
|
182 |
+
"gender": src_result["gender"],
|
183 |
+
"accent": src_result["accent"],
|
184 |
+
"locale": src_result["locale"],
|
185 |
+
"segment": src_result["segment"],
|
186 |
+
}
|
187 |
+
yield path, result
|
188 |
+
|
189 |
+
elif self.config.schema == "seacrowd_sptext":
|
190 |
+
for i, audio_archive in enumerate(audio_archives):
|
191 |
+
for path, file in audio_archive:
|
192 |
+
_, filename = os.path.split(path)
|
193 |
+
if filename in metadata:
|
194 |
+
src_result = dict(metadata[filename])
|
195 |
+
# set the audio feature and the path to the extracted file
|
196 |
+
path = os.path.join(local_extracted_archive_paths[i], path)
|
197 |
+
result = {
|
198 |
+
"id": src_result["path"].replace(".mp3", ""),
|
199 |
+
"path": path,
|
200 |
+
"audio": {"path": path, "bytes": file.read()},
|
201 |
+
"text": src_result["sentence"],
|
202 |
+
"speaker_id": src_result["client_id"],
|
203 |
+
"metadata": {
|
204 |
+
"speaker_age": _AGE_TO_INT[src_result["age"]],
|
205 |
+
"speaker_gender": src_result["gender"],
|
206 |
+
},
|
207 |
+
}
|
208 |
+
yield path, result
|