holylovenia
commited on
Upload cosem.py with huggingface_hub
Browse files
cosem.py
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
import re
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.utils import schemas
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@article{gonzales_corpus_2021,
|
28 |
+
title = {The {Corpus} of {Singapore} {English} {Messages} ({CoSEM})},
|
29 |
+
issn = {0883-2919, 1467-971X},
|
30 |
+
url = {https://onlinelibrary.wiley.com/doi/10.1111/weng.12534},
|
31 |
+
doi = {10.1111/weng.12534},
|
32 |
+
language = {en},
|
33 |
+
urldate = {2022-02-19},
|
34 |
+
journal = {World Englishes},
|
35 |
+
author = {Gonzales, Wilkinson Daniel Wong and Hiramoto, Mie and R. E. Leimgruber, Jakob and Lim, Jun Jie},
|
36 |
+
month = feb,
|
37 |
+
year = {2021},
|
38 |
+
}
|
39 |
+
"""
|
40 |
+
|
41 |
+
_DATASETNAME = "cosem"
|
42 |
+
|
43 |
+
_DESCRIPTION = """\
|
44 |
+
The CoSEM dataset consists of over 900,000 lines of online messages from the messaging platform WhatsApp collected from personal chat
|
45 |
+
logs of students enrolled in an advanced sociolinguistics class from the National University of Singapore. Messages collected were
|
46 |
+
from 2016 to 2019. The dataset is in .txt format, where each line of utterance is tagged with a unique identifier that includes its
|
47 |
+
metadata such as line number, year message was sent, and age and nationality of sender.
|
48 |
+
"""
|
49 |
+
|
50 |
+
_HOMEPAGE = "https://github.com/wdwgonzales/CoSEM/blob/main/Corpus/COSEM_v4_publicrelease_SEP172023.zip"
|
51 |
+
|
52 |
+
_LANGUAGES = ["eng"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
53 |
+
|
54 |
+
_LICENSE = Licenses.CC0_1_0.value
|
55 |
+
|
56 |
+
_LOCAL = False
|
57 |
+
|
58 |
+
_URLS = {_DATASETNAME: "https://github.com/wdwgonzales/CoSEM/raw/main/Corpus/COSEM_v4_publicrelease_SEP172023.zip"}
|
59 |
+
|
60 |
+
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
|
61 |
+
_SUPPORTED_SCHEMA_STRINGS = [f"seacrowd_{str(TASK_TO_SCHEMA[task]).lower()}" for task in _SUPPORTED_TASKS]
|
62 |
+
|
63 |
+
_SOURCE_VERSION = "1.0.0"
|
64 |
+
|
65 |
+
_SEACROWD_VERSION = "2024.06.20"
|
66 |
+
|
67 |
+
|
68 |
+
class CoSEMDataset(datasets.GeneratorBasedBuilder):
|
69 |
+
"""The CoSEM dataset consists of over 900,000 lines of online messages from the messaging platform WhatsApp collected from
|
70 |
+
personal chat logs of students enrolled in an advanced sociolinguistics class from the National University of Singapore."""
|
71 |
+
|
72 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
73 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
74 |
+
|
75 |
+
subset_id = _DATASETNAME
|
76 |
+
|
77 |
+
BUILDER_CONFIGS = [
|
78 |
+
SEACrowdConfig(
|
79 |
+
name=f"{subset_id}_source",
|
80 |
+
version=SOURCE_VERSION,
|
81 |
+
description=f"{_DATASETNAME} source schema",
|
82 |
+
schema="source",
|
83 |
+
subset_id=subset_id,
|
84 |
+
)
|
85 |
+
]
|
86 |
+
|
87 |
+
seacrowd_schema_config: list[SEACrowdConfig] = []
|
88 |
+
|
89 |
+
for seacrowd_schema in _SUPPORTED_SCHEMA_STRINGS:
|
90 |
+
|
91 |
+
seacrowd_schema_config.append(
|
92 |
+
SEACrowdConfig(
|
93 |
+
name=f"{subset_id}_{seacrowd_schema}",
|
94 |
+
version=SEACROWD_VERSION,
|
95 |
+
description=f"{_DATASETNAME} {seacrowd_schema} schema",
|
96 |
+
schema=f"{seacrowd_schema}",
|
97 |
+
subset_id=subset_id,
|
98 |
+
)
|
99 |
+
)
|
100 |
+
|
101 |
+
BUILDER_CONFIGS.extend(seacrowd_schema_config)
|
102 |
+
|
103 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
104 |
+
|
105 |
+
def _info(self) -> datasets.DatasetInfo:
|
106 |
+
|
107 |
+
if self.config.schema == "source":
|
108 |
+
features = datasets.Features(
|
109 |
+
{
|
110 |
+
"id": datasets.Value("string"),
|
111 |
+
"text": datasets.Value("string"),
|
112 |
+
}
|
113 |
+
)
|
114 |
+
|
115 |
+
elif self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SELF_SUPERVISED_PRETRAINING]).lower()}":
|
116 |
+
features = schemas.ssp_features
|
117 |
+
|
118 |
+
else:
|
119 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
120 |
+
|
121 |
+
return datasets.DatasetInfo(
|
122 |
+
description=_DESCRIPTION,
|
123 |
+
features=features,
|
124 |
+
homepage=_HOMEPAGE,
|
125 |
+
license=_LICENSE,
|
126 |
+
citation=_CITATION,
|
127 |
+
)
|
128 |
+
|
129 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
130 |
+
"""Returns SplitGenerators."""
|
131 |
+
|
132 |
+
split_generators = []
|
133 |
+
|
134 |
+
path = dl_manager.download_and_extract(_URLS[_DATASETNAME])
|
135 |
+
|
136 |
+
split_generators.append(
|
137 |
+
datasets.SplitGenerator(
|
138 |
+
name=datasets.Split.TRAIN,
|
139 |
+
gen_kwargs={
|
140 |
+
"path": os.path.join(path, "COSEM_v4_publicrelease_SEP172023"),
|
141 |
+
},
|
142 |
+
)
|
143 |
+
)
|
144 |
+
|
145 |
+
return split_generators
|
146 |
+
|
147 |
+
def _generate_examples(self, path: str) -> Tuple[int, Dict]:
|
148 |
+
"""Yields examples as (key, example) tuples."""
|
149 |
+
|
150 |
+
files = os.listdir(path)
|
151 |
+
file_paths = [os.path.join(path, file) for file in files]
|
152 |
+
pattern = r"<(COSEM:.*?)>(.*?)(?=<COSEM:|$)"
|
153 |
+
|
154 |
+
s = {}
|
155 |
+
|
156 |
+
for file_path in file_paths:
|
157 |
+
with open(file_path, "r", encoding="utf-8") as file:
|
158 |
+
text = file.read()
|
159 |
+
|
160 |
+
matches = re.findall(pattern, text, re.DOTALL)
|
161 |
+
for match in matches:
|
162 |
+
key = match[0].strip()
|
163 |
+
value = match[1].strip()
|
164 |
+
|
165 |
+
if key in s:
|
166 |
+
continue
|
167 |
+
s[key] = value
|
168 |
+
|
169 |
+
if self.config.schema == "source" or self.config.schema == f"seacrowd_{str(TASK_TO_SCHEMA[Tasks.SELF_SUPERVISED_PRETRAINING]).lower()}":
|
170 |
+
yield key, {"id": key, "text": value}
|
171 |
+
|
172 |
+
else:
|
173 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|