File size: 10,334 Bytes
38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 a442758 38208c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks
_LANGUAGES = ["ind", "eng"]
_CITATION = """\
@article{wang2020covost,
title={Covost 2 and massively multilingual speech-to-text translation},
author={Wang, Changhan and Wu, Anne and Pino, Juan},
journal={arXiv preprint arXiv:2007.10310},
year={2020}
}
@inproceedings{wang21s_interspeech,
author={Wang, Changhan and Wu, Anne and Pino, Juan},
title={{CoVoST 2 and Massively Multilingual Speech Translation}},
year=2021,
booktitle={Proc. Interspeech 2021},
pages={2247--2251},
url={https://www.isca-speech.org/archive/interspeech_2021/wang21s_interspeech}
doi={10.21437/Interspeech.2021-2027}
}
"""
_DATASETNAME = "covost2"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_DESCRIPTION = """\
CoVoST2 is a large-scale multilingual speech translation corpus covering translations from 21 languages to English
and from English into 15 languages. The dataset is created using Mozilla's open-source Common Voice database of
crowdsourced voice recordings. There are 2,900 hours of speech represented in the corpus.
"""
_HOMEPAGE = "https://huggingface.co/datasets/covost2"
_LOCAL = False
_LICENSE = "CC BY-NC 4.0"
COMMONVOICE_URL_TEMPLATE = "https://voice-prod-bundler-ee1969a6ce8178826482b88e843c335139bd3fb4.s3.amazonaws.com/cv-corpus-6.1-2020-12-11/{lang}.tar.gz"
LANG_CODE = {"eng": "en", "ind": "id"}
LANG_COMBINATION_CODE = [("ind", "eng"), ("eng", "ind")]
_URLS = {_DATASETNAME: {"ind": COMMONVOICE_URL_TEMPLATE.format(lang=LANG_CODE["ind"]), "eng": COMMONVOICE_URL_TEMPLATE.format(lang=LANG_CODE["eng"])}}
_SUPPORTED_TASKS = [Tasks.SPEECH_TO_TEXT_TRANSLATION, Tasks.MACHINE_TRANSLATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
def seacrowd_config_constructor(src_lang, tgt_lang, schema, version):
if src_lang == "" or tgt_lang == "":
raise ValueError(f"Invalid src_lang {src_lang} or tgt_lang {tgt_lang}")
if schema not in ["source", "seacrowd_sptext", "seacrowd_t2t"]:
raise ValueError(f"Invalid schema: {schema}")
return SEACrowdConfig(
name="covost2_{src}_{tgt}_{schema}".format(src=src_lang, tgt=tgt_lang, schema=schema),
version=datasets.Version(version),
description="covost2 source schema for {schema} from {src} to {tgt}".format(schema=schema, src=src_lang, tgt=tgt_lang),
schema=schema,
subset_id="co_vo_st2_{src}_{tgt}".format(src=src_lang, tgt=tgt_lang),
)
class Covost2(datasets.GeneratorBasedBuilder):
"""CoVoST2 dataset is a dataset mainly for speech to text translation task. The data was taken from Mozilla Common
Voices dataset. In the implementation of the source schema, the audio and transcriptions of the source language,
as well as the translated transcriptions are provided. In the implementation of the seacrowd schema, only the audio of the source language and transcriptions of the
target language are provided. The source and target languages available are eng->ind and ind -> eng respectively.
In addition to the speech to text translation, this dataset (text only) can be used as a machine translation for
eng->ind and ind->eng.
Side note: the amount of data takes about 40GB for the English source data and 1GB for the Indonesian source data.
"""
COVOST_URL_TEMPLATE = "https://dl.fbaipublicfiles.com/covost/covost_v2.{src_lang}_{tgt_lang}.tsv.tar.gz"
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = (
[seacrowd_config_constructor(src, tgt, "source", _SOURCE_VERSION) for (src, tgt) in LANG_COMBINATION_CODE]
+ [seacrowd_config_constructor(src, tgt, "seacrowd_sptext", _SEACROWD_VERSION) for (src, tgt) in LANG_COMBINATION_CODE]
+ [seacrowd_config_constructor(src, tgt, "seacrowd_t2t", _SEACROWD_VERSION) for (src, tgt) in LANG_COMBINATION_CODE]
)
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_eng_ind_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{"client_id": datasets.Value("string"), "file": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "sentence": datasets.Value("string"), "translation": datasets.Value("string"), "id": datasets.Value("string")}
)
elif self.config.schema == "seacrowd_sptext":
features = schemas.speech_text_features
elif self.config.schema == "seacrowd_t2t":
features = schemas.text2text_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
task_templates=[datasets.AutomaticSpeechRecognition(audio_column="audio", transcription_column="sentences")] if (self.config.schema == "seacrowd_sptext" or self.config.schema == "source") else None,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
name_split = self.config.name.split("_")
src_lang, tgt_lang = name_split[1], name_split[2]
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls[src_lang])
src_lang = LANG_CODE[src_lang]
tgt_lang = LANG_CODE[tgt_lang]
data_dir = data_dir + "/" + "/".join(["cv-corpus-6.1-2020-12-11", src_lang])
covost_tsv_path = self.COVOST_URL_TEMPLATE.format(src_lang=src_lang, tgt_lang=tgt_lang)
extracted_dir = dl_manager.download_and_extract(covost_tsv_path)
covost_tsv_filename = "covost_v2.{src_lang}_{tgt_lang}.tsv"
covost_tsv_dir = os.path.join(extracted_dir, covost_tsv_filename.format(src_lang=src_lang, tgt_lang=tgt_lang))
cv_tsv_dir = os.path.join(data_dir, "validated.tsv")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir,
"covost_tsv_path": covost_tsv_dir,
"cv_tsv_path": cv_tsv_dir,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir,
"covost_tsv_path": covost_tsv_dir,
"cv_tsv_path": cv_tsv_dir,
"split": "test",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir,
"covost_tsv_path": covost_tsv_dir,
"cv_tsv_path": cv_tsv_dir,
"split": "dev",
},
),
]
def _generate_examples(self, filepath: Path, covost_tsv_path: Path, cv_tsv_path: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
name_split = self.config.name.split("_")
src_lang, tgt_lang = name_split[1], name_split[2]
covost_tsv = self._load_df_from_tsv(covost_tsv_path)
cv_tsv = self._load_df_from_tsv(cv_tsv_path)
df = pd.merge(
left=cv_tsv[["path", "sentence", "client_id"]],
right=covost_tsv[["path", "translation", "split"]],
how="inner",
on="path",
)
if split == "train":
df = df[(df["split"] == "train") | (df["split"] == "train_covost")]
else:
df = df[df["split"] == split]
for id, row in df.iterrows():
if self.config.schema == "source":
yield id, {
"id": row["path"].replace(".mp3", ""),
"client_id": row["client_id"],
"sentence": row["sentence"],
"translation": row["translation"],
"file": os.path.join(filepath, "clips", row["path"]),
"audio": os.path.join(filepath, "clips", row["path"]),
}
elif self.config.schema == "seacrowd_sptext":
yield id, {
"id": row["path"].replace(".mp3", ""),
"speaker_id": row["client_id"],
"text": row["translation"],
"path": os.path.join(filepath, "clips", row["path"]),
"audio": os.path.join(filepath, "clips", row["path"]),
"metadata": {
"speaker_age": None,
"speaker_gender": None,
},
}
elif self.config.schema == "seacrowd_t2t":
yield id, {"id": row["path"].replace(".mp3", ""), "text_1": row["sentence"], "text_2": row["translation"], "text_1_name": src_lang, "text_2_name": tgt_lang}
else:
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.")
@staticmethod
def _load_df_from_tsv(path):
return pd.read_csv(
path,
sep="\t",
header=0,
encoding="utf-8",
escapechar="\\",
quoting=csv.QUOTE_NONE,
na_filter=False,
)
|