|
import json |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks, Licenses |
|
|
|
_CITATION = """\ |
|
@article{mahadi2023indonesian, |
|
author = {Made Raharja Surya Mahadi and Nugraha Priya Utama}, |
|
title = {Indonesian Text-to-Image Synthesis with Sentence-BERT and FastGAN}, |
|
journal = {arXiv preprint arXiv:2303.14517}, |
|
year = {2023}, |
|
url = {https://arxiv.org/abs/2303.14517}, |
|
} |
|
""" |
|
|
|
_DATASETNAME = "cub_bahasa" |
|
_DESCRIPTION = """\ |
|
Semi-translated dataset of CUB-200-2011 into Indonesian. This dataset contains thousands |
|
of image-text annotation pairs of 200 subcategories belonging to birds. The natural |
|
language descriptions are collected through the Amazon Mechanical Turk (AMT) platform and |
|
are required at least 10 words, without any information on subcategories and actions. |
|
""" |
|
|
|
_LOCAL=False |
|
_LANGUAGES = ["ind"] |
|
|
|
_HOMEPAGE = "https://github.com/share424/Indonesian-Text-to-Image-synthesis-with-Sentence-BERT-and-FastGAN" |
|
_LICENSE = Licenses.UNKNOWN.value |
|
_URLS = { |
|
"text": "https://raw.githubusercontent.com/share424/Indonesian-Text-to-Image-synthesis-with-Sentence-BERT-and-FastGAN/master/dataset/indo_cub_200_2011_captions.json", |
|
"image": "https://data.caltech.edu/records/65de6-vp158/files/CUB_200_2011.tgz" |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class CubBahasaDataset(datasets.GeneratorBasedBuilder): |
|
"""CUB-200-2011 image-text dataset in Indonesian language for bird domain.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
SEACROWD_SCHEMA_NAME = "imtext" |
|
IMAGE_CLASS = { |
|
1: '001.Black_footed_Albatross', |
|
2: '002.Laysan_Albatross', |
|
3: '003.Sooty_Albatross', |
|
4: '004.Groove_billed_Ani', |
|
5: '005.Crested_Auklet', |
|
6: '006.Least_Auklet', |
|
7: '007.Parakeet_Auklet', |
|
8: '008.Rhinoceros_Auklet', |
|
9: '009.Brewer_Blackbird', |
|
10: '010.Red_winged_Blackbird', |
|
11: '011.Rusty_Blackbird', |
|
12: '012.Yellow_headed_Blackbird', |
|
13: '013.Bobolink', |
|
14: '014.Indigo_Bunting', |
|
15: '015.Lazuli_Bunting', |
|
16: '016.Painted_Bunting', |
|
17: '017.Cardinal', |
|
18: '018.Spotted_Catbird', |
|
19: '019.Gray_Catbird', |
|
20: '020.Yellow_breasted_Chat', |
|
21: '021.Eastern_Towhee', |
|
22: '022.Chuck_will_Widow', |
|
23: '023.Brandt_Cormorant', |
|
24: '024.Red_faced_Cormorant', |
|
25: '025.Pelagic_Cormorant', |
|
26: '026.Bronzed_Cowbird', |
|
27: '027.Shiny_Cowbird', |
|
28: '028.Brown_Creeper', |
|
29: '029.American_Crow', |
|
30: '030.Fish_Crow', |
|
31: '031.Black_billed_Cuckoo', |
|
32: '032.Mangrove_Cuckoo', |
|
33: '033.Yellow_billed_Cuckoo', |
|
34: '034.Gray_crowned_Rosy_Finch', |
|
35: '035.Purple_Finch', |
|
36: '036.Northern_Flicker', |
|
37: '037.Acadian_Flycatcher', |
|
38: '038.Great_Crested_Flycatcher', |
|
39: '039.Least_Flycatcher', |
|
40: '040.Olive_sided_Flycatcher', |
|
41: '041.Scissor_tailed_Flycatcher', |
|
42: '042.Vermilion_Flycatcher', |
|
43: '043.Yellow_bellied_Flycatcher', |
|
44: '044.Frigatebird', |
|
45: '045.Northern_Fulmar', |
|
46: '046.Gadwall', |
|
47: '047.American_Goldfinch', |
|
48: '048.European_Goldfinch', |
|
49: '049.Boat_tailed_Grackle', |
|
50: '050.Eared_Grebe', |
|
51: '051.Horned_Grebe', |
|
52: '052.Pied_billed_Grebe', |
|
53: '053.Western_Grebe', |
|
54: '054.Blue_Grosbeak', |
|
55: '055.Evening_Grosbeak', |
|
56: '056.Pine_Grosbeak', |
|
57: '057.Rose_breasted_Grosbeak', |
|
58: '058.Pigeon_Guillemot', |
|
59: '059.California_Gull', |
|
60: '060.Glaucous_winged_Gull', |
|
61: '061.Heermann_Gull', |
|
62: '062.Herring_Gull', |
|
63: '063.Ivory_Gull', |
|
64: '064.Ring_billed_Gull', |
|
65: '065.Slaty_backed_Gull', |
|
66: '066.Western_Gull', |
|
67: '067.Anna_Hummingbird', |
|
68: '068.Ruby_throated_Hummingbird', |
|
69: '069.Rufous_Hummingbird', |
|
70: '070.Green_Violetear', |
|
71: '071.Long_tailed_Jaeger', |
|
72: '072.Pomarine_Jaeger', |
|
73: '073.Blue_Jay', |
|
74: '074.Florida_Jay', |
|
75: '075.Green_Jay', |
|
76: '076.Dark_eyed_Junco', |
|
77: '077.Tropical_Kingbird', |
|
78: '078.Gray_Kingbird', |
|
79: '079.Belted_Kingfisher', |
|
80: '080.Green_Kingfisher', |
|
81: '081.Pied_Kingfisher', |
|
82: '082.Ringed_Kingfisher', |
|
83: '083.White_breasted_Kingfisher', |
|
84: '084.Red_legged_Kittiwake', |
|
85: '085.Horned_Lark', |
|
86: '086.Pacific_Loon', |
|
87: '087.Mallard', |
|
88: '088.Western_Meadowlark', |
|
89: '089.Hooded_Merganser', |
|
90: '090.Red_breasted_Merganser', |
|
91: '091.Mockingbird', |
|
92: '092.Nighthawk', |
|
93: '093.Clark_Nutcracker', |
|
94: '094.White_breasted_Nuthatch', |
|
95: '095.Baltimore_Oriole', |
|
96: '096.Hooded_Oriole', |
|
97: '097.Orchard_Oriole', |
|
98: '098.Scott_Oriole', |
|
99: '099.Ovenbird', |
|
100: '100.Brown_Pelican', |
|
101: '101.White_Pelican', |
|
102: '102.Western_Wood_Pewee', |
|
103: '103.Sayornis', |
|
104: '104.American_Pipit', |
|
105: '105.Whip_poor_Will', |
|
106: '106.Horned_Puffin', |
|
107: '107.Common_Raven', |
|
108: '108.White_necked_Raven', |
|
109: '109.American_Redstart', |
|
110: '110.Geococcyx', |
|
111: '111.Loggerhead_Shrike', |
|
112: '112.Great_Grey_Shrike', |
|
113: '113.Baird_Sparrow', |
|
114: '114.Black_throated_Sparrow', |
|
115: '115.Brewer_Sparrow', |
|
116: '116.Chipping_Sparrow', |
|
117: '117.Clay_colored_Sparrow', |
|
118: '118.House_Sparrow', |
|
119: '119.Field_Sparrow', |
|
120: '120.Fox_Sparrow', |
|
121: '121.Grasshopper_Sparrow', |
|
122: '122.Harris_Sparrow', |
|
123: '123.Henslow_Sparrow', |
|
124: '124.Le_Conte_Sparrow', |
|
125: '125.Lincoln_Sparrow', |
|
126: '126.Nelson_Sharp_tailed_Sparrow', |
|
127: '127.Savannah_Sparrow', |
|
128: '128.Seaside_Sparrow', |
|
129: '129.Song_Sparrow', |
|
130: '130.Tree_Sparrow', |
|
131: '131.Vesper_Sparrow', |
|
132: '132.White_crowned_Sparrow', |
|
133: '133.White_throated_Sparrow', |
|
134: '134.Cape_Glossy_Starling', |
|
135: '135.Bank_Swallow', |
|
136: '136.Barn_Swallow', |
|
137: '137.Cliff_Swallow', |
|
138: '138.Tree_Swallow', |
|
139: '139.Scarlet_Tanager', |
|
140: '140.Summer_Tanager', |
|
141: '141.Artic_Tern', |
|
142: '142.Black_Tern', |
|
143: '143.Caspian_Tern', |
|
144: '144.Common_Tern', |
|
145: '145.Elegant_Tern', |
|
146: '146.Forsters_Tern', |
|
147: '147.Least_Tern', |
|
148: '148.Green_tailed_Towhee', |
|
149: '149.Brown_Thrasher', |
|
150: '150.Sage_Thrasher', |
|
151: '151.Black_capped_Vireo', |
|
152: '152.Blue_headed_Vireo', |
|
153: '153.Philadelphia_Vireo', |
|
154: '154.Red_eyed_Vireo', |
|
155: '155.Warbling_Vireo', |
|
156: '156.White_eyed_Vireo', |
|
157: '157.Yellow_throated_Vireo', |
|
158: '158.Bay_breasted_Warbler', |
|
159: '159.Black_and_white_Warbler', |
|
160: '160.Black_throated_Blue_Warbler', |
|
161: '161.Blue_winged_Warbler', |
|
162: '162.Canada_Warbler', |
|
163: '163.Cape_May_Warbler', |
|
164: '164.Cerulean_Warbler', |
|
165: '165.Chestnut_sided_Warbler', |
|
166: '166.Golden_winged_Warbler', |
|
167: '167.Hooded_Warbler', |
|
168: '168.Kentucky_Warbler', |
|
169: '169.Magnolia_Warbler', |
|
170: '170.Mourning_Warbler', |
|
171: '171.Myrtle_Warbler', |
|
172: '172.Nashville_Warbler', |
|
173: '173.Orange_crowned_Warbler', |
|
174: '174.Palm_Warbler', |
|
175: '175.Pine_Warbler', |
|
176: '176.Prairie_Warbler', |
|
177: '177.Prothonotary_Warbler', |
|
178: '178.Swainson_Warbler', |
|
179: '179.Tennessee_Warbler', |
|
180: '180.Wilson_Warbler', |
|
181: '181.Worm_eating_Warbler', |
|
182: '182.Yellow_Warbler', |
|
183: '183.Northern_Waterthrush', |
|
184: '184.Louisiana_Waterthrush', |
|
185: '185.Bohemian_Waxwing', |
|
186: '186.Cedar_Waxwing', |
|
187: '187.American_Three_toed_Woodpecker', |
|
188: '188.Pileated_Woodpecker', |
|
189: '189.Red_bellied_Woodpecker', |
|
190: '190.Red_cockaded_Woodpecker', |
|
191: '191.Red_headed_Woodpecker', |
|
192: '192.Downy_Woodpecker', |
|
193: '193.Bewick_Wren', |
|
194: '194.Cactus_Wren', |
|
195: '195.Carolina_Wren', |
|
196: '196.House_Wren', |
|
197: '197.Marsh_Wren', |
|
198: '198.Rock_Wren', |
|
199: '199.Winter_Wren', |
|
200: '200.Common_Yellowthroat' |
|
} |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"image_id": datasets.Value("int64"), |
|
"class_id": datasets.Value("int64"), |
|
"image_path": datasets.Value("string"), |
|
"class_name": datasets.Value("string"), |
|
"captions": [ |
|
{ |
|
"caption_eng": datasets.Value("string"), |
|
"caption_ind": datasets.Value("string"), |
|
} |
|
] |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.image_text_features(label_names=list(self.IMAGE_CLASS.values())) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
|
|
data_path = dl_manager.download_and_extract(_URLS) |
|
|
|
|
|
image_meta = Path(data_path["image"]) / "CUB_200_2011" / "images.txt" |
|
df_image = pd.read_csv(image_meta, sep=" ", names=["image_id", "image_path"]) |
|
df_image['image_path'] = df_image['image_path'].apply(lambda x: Path(image_meta.parent, 'images', x)) |
|
|
|
label_meta = Path(data_path["image"]) / "CUB_200_2011" / "image_class_labels.txt" |
|
df_label = pd.read_csv(label_meta, sep=" ", names=["image_id", "class_id"]) |
|
|
|
|
|
text_path = Path(data_path["text"]) |
|
with open(text_path, "r") as f: |
|
text_data = json.load(f) |
|
|
|
df_text = pd.DataFrame([ |
|
{ |
|
'image_name': item['filename'], |
|
'en_caption': caption['english'], |
|
'id_caption': caption['indo'] |
|
} for item in text_data['dataset'] for caption in item['captions'] |
|
]) |
|
grouped_text = df_text.groupby('image_name').agg(list).reset_index() |
|
|
|
|
|
split_dir = Path(data_path["image"]) / "CUB_200_2011" / "train_test_split.txt" |
|
df_split = pd.read_csv(split_dir, sep=" ", names=["image_id", "is_train"]) |
|
|
|
|
|
df_image['image_name'] = df_image['image_path'].apply(lambda x: x.name) |
|
df = pd.merge(df_image, grouped_text, on="image_name") |
|
df.drop(columns=['image_name'], inplace=True) |
|
|
|
df = pd.merge(df, df_label, on="image_id") |
|
df = pd.merge(df, df_split, on="image_id") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data": df[df['is_train'] == 1], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data": df[df['is_train'] == 0], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data: pd.DataFrame, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema == "source": |
|
for key, row in data.iterrows(): |
|
example = { |
|
"image_id": row["image_id"], |
|
"class_id": row["class_id"], |
|
"image_path": row["image_path"], |
|
"class_name": self.IMAGE_CLASS[row["class_id"]], |
|
"captions": [ |
|
{ |
|
"caption_eng": row["en_caption"][i], |
|
"caption_ind": row["id_caption"][i], |
|
} for i in range(len(row["en_caption"])) |
|
] |
|
} |
|
yield key, example |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
key = 0 |
|
for _, row in data.iterrows(): |
|
for i in range(len(row["id_caption"])): |
|
example = { |
|
"id": str(key), |
|
"image_paths": [row["image_path"]], |
|
"texts": row["id_caption"][i], |
|
"metadata": { |
|
"context": row["en_caption"][i], |
|
"labels": [self.IMAGE_CLASS[row["class_id"]]], |
|
} |
|
} |
|
yield key, example |
|
key += 1 |