|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """ |
|
@techreport{dulaynag2021filaoa, |
|
author = {Dulay, Katrina May and Nag, Somali}, |
|
title = {TalkTogether Age-of-Acquisition Word Lists for 885 Kannada and Filipino Words}, |
|
institution = {TalkTogether}, |
|
year = {2021}, |
|
type = {Technical Report}, |
|
url = {https://osf.io/gnjmr}, |
|
doi = {10.17605/OSF.IO/3ZDFN}, |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["fil", "eng"] |
|
_DATASETNAME = "filipino_words_aoa" |
|
_DESCRIPTION = """\ |
|
The dataset contains 885 Filipino words derived from an age-of-acquisition participant study. The words are derived child-directed corpora |
|
using pre-specified linguistic criteria. Each word in the corpora contains information about its meaning, part-of-speech (POS), age band, |
|
morpheme count, syllable length, phoneme length, and the level of book it was derived from. The dataset can be used for lexical complexity |
|
prediction, lexical simplification, and readability assessment research. |
|
""" |
|
|
|
_HOMEPAGE = "https://osf.io/3zdfn/" |
|
_LICENSE = Licenses.CC_BY_SA_4_0.value |
|
_URL = "https://osf.io/download/j42g7/" |
|
|
|
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class FilipinoWordsAOADataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
Dataset of Filipino words, their English meanings, and their part-of-speech tag |
|
obtained from an age-of-acquisition study. |
|
""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=_DATASETNAME, |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_t2t", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SeaCrowd text-to-text schema", |
|
schema="seacrowd_t2t", |
|
subset_id=_DATASETNAME, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"word": datasets.Value("string"), |
|
"meaning": datasets.Value("string"), |
|
"POS_tag": datasets.Value("string"), |
|
"mean_AoA": datasets.Value("float64"), |
|
"mean_AoA_ageband": datasets.Value("string"), |
|
"morpheme_count": datasets.Value("int64"), |
|
"syllable_length": datasets.Value("int64"), |
|
"phoneme_length": datasets.Value("int64"), |
|
"book_ageband": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
filepath = dl_manager.download(_URL) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": filepath})] |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
df = pd.read_excel(filepath, index_col=None) |
|
for index, row in df.iterrows(): |
|
if self.config.schema == "source": |
|
example = row.to_dict() |
|
|
|
elif self.config.schema == "seacrowd_t2t": |
|
example = { |
|
"id": str(index), |
|
"text_1": row["word"], |
|
"text_2": row["meaning"], |
|
"text_1_name": "fil", |
|
"text_2_name": "eng", |
|
} |
|
yield index, example |