|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import csv |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses |
|
|
|
_CITATION = """\ |
|
@article{article, |
|
author = {Borra, Allan and Pease, Adam and Edita, Rachel and Roxas, and Dita, Shirley}, |
|
year = {2010}, |
|
month = {01}, |
|
pages = {}, |
|
title = {Introducing Filipino WordNet} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "filwordnet" |
|
|
|
_DESCRIPTION = """\ |
|
Filipino WordNet (FilWordNet) is a lexical database of Filipino language. |
|
It was derived from the Princeton WordNet and translated by humans to Filipino. |
|
It documents 13,539 unique words and 9,519 synsets. Each synset includes the definition, |
|
part-of-speech, word senses, and Suggested Upper Merged Ontology terms (SUMO terms). |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/danjohnvelasco/Filipino-WordNet" |
|
|
|
_LANGUAGES = ["fil"] |
|
|
|
_LICENSE = Licenses.UNKNOWN.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://raw.githubusercontent.com/danjohnvelasco/Filipino-WordNet/main/filwordnet.csv", |
|
} |
|
|
|
_SUPPORTED_TASKS = [] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class FilWordNetDataset(datasets.GeneratorBasedBuilder): |
|
"""The Filipino WordNet (FilWordNet) is a lexical database of Filipino language containing 13,539 unique words and 9,519 synsets.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"word_id": datasets.Value("int32"), |
|
"lemma": datasets.Value("string"), |
|
"synset_id": datasets.Value("int32"), |
|
"sense_id": datasets.Value("int32"), |
|
"pos": datasets.Value("string"), |
|
"lexdomain_id": datasets.Value("int32"), |
|
"definition": datasets.Value("string"), |
|
"last_modifier": datasets.Value("int32"), |
|
"sumo": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
urls = _URLS[_DATASETNAME] |
|
file = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": file, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
rows = [] |
|
is_first_row = True |
|
with open(filepath, "r") as file: |
|
csv_reader = csv.reader(file, delimiter=",") |
|
for row in csv_reader: |
|
if is_first_row: |
|
is_first_row = False |
|
continue |
|
|
|
rows.append(row) |
|
|
|
if self.config.schema == "source": |
|
for key, row in enumerate(rows): |
|
example = { |
|
"word_id": row[0], |
|
"lemma": row[1], |
|
"synset_id": row[2], |
|
"sense_id": row[3], |
|
"pos": row[4], |
|
"lexdomain_id": row[5], |
|
"definition": row[6], |
|
"last_modifier": row[7], |
|
"sumo": row[8], |
|
} |
|
yield key, example |
|
|