|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
try: |
|
import pyreadr |
|
except: |
|
print("Install the `pyreadr` package to use.") |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import (TASK_TO_SCHEMA, Licenses, Tasks) |
|
|
|
_DATASETNAME = "iatf" |
|
|
|
_CITATION = """\ |
|
@misc{ |
|
iatf, |
|
title={Inter-Agency Task Force for the Management of Emerging Infectious Diseases (IATF) COVID-19 Resolutions}, |
|
url={https://como-ph.github.io/post/creating-text-data-from-iatf-resolutions/}, |
|
author={Chris Mercado, John Robert Medina, Ernest Guevarra} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
To assess possible impact of various COVID-19 prediction models on Philippine government response, text from various resolutions issued by |
|
the Inter-agency Task Force for the Management of Emerging Infectious Diseases (IATF) has been collected using data mining approaches implemented in R. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/como-ph/covidphtext/tree/master/data" |
|
|
|
_LICENSE = Licenses.GPL_3_0.value |
|
|
|
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] |
|
_SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() |
|
_LANGUAGES = ["fil"] |
|
_LOCAL = False |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_URL_BASE = "https://github.com/como-ph/covidphtext/raw/master/data/" |
|
_URLS = [ |
|
"iatfGuidelineOmnibus.rda", |
|
"iatfResolution01.rda", |
|
"iatfResolution02.rda", |
|
"iatfResolution03.rda", |
|
"iatfResolution04.rda", |
|
"iatfResolution05.rda", |
|
"iatfResolution06.rda", |
|
"iatfResolution07.rda", |
|
"iatfResolution08.rda", |
|
"iatfResolution09.rda", |
|
"iatfResolution10.rda", |
|
"iatfResolution11.rda", |
|
"iatfResolution12.rda", |
|
"iatfResolution13.rda", |
|
"iatfResolution14.rda", |
|
"iatfResolution15.rda", |
|
"iatfResolution16.rda", |
|
"iatfResolution17.rda", |
|
"iatfResolution18.rda", |
|
"iatfResolution19.rda", |
|
"iatfResolution20.rda", |
|
"iatfResolution21.rda", |
|
"iatfResolution22.rda", |
|
"iatfResolution23.rda", |
|
"iatfResolution24.rda", |
|
"iatfResolution25.rda", |
|
"iatfResolution26.rda", |
|
"iatfResolution27.rda", |
|
"iatfResolution28.rda", |
|
"iatfResolution29.rda", |
|
"iatfResolution30.rda", |
|
"iatfResolution30A.rda", |
|
"iatfResolution31.rda", |
|
"iatfResolution32.rda", |
|
"iatfResolution33.rda", |
|
"iatfResolution34.rda", |
|
"iatfResolution35.rda", |
|
"iatfResolution36.rda", |
|
"iatfResolution37.rda", |
|
"iatfResolution38.rda", |
|
"iatfResolution39.rda", |
|
"iatfResolution40.rda", |
|
"iatfResolution41.rda", |
|
"iatfResolution42.rda", |
|
"iatfResolution43.rda", |
|
"iatfResolution44.rda", |
|
"iatfResolution45.rda", |
|
"iatfResolution46.rda", |
|
"iatfResolution46A.rda", |
|
"iatfResolution47.rda", |
|
"iatfResolution48.rda", |
|
"iatfResolution49.rda", |
|
"iatfResolution50.rda", |
|
"iatfResolution50A.rda", |
|
"iatfResolution51.rda", |
|
"iatfResolution52.rda", |
|
"iatfResolution53.rda", |
|
"iatfResolution54.rda", |
|
"iatfResolution55.rda", |
|
"iatfResolution55A.rda", |
|
"iatfResolution56.rda", |
|
"iatfResolution57.rda", |
|
"iatfResolution58.rda", |
|
"iatfResolution59.rda", |
|
"iatfResolution60.rda", |
|
"iatfResolution60A.rda", |
|
] |
|
|
|
|
|
class IATFDataset(datasets.GeneratorBasedBuilder): |
|
"""Inter-agency Task Force for the Management of Emerging Infectious Diseases Dataset""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{_SEACROWD_SCHEMA_NAME}", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} seacrowd schema", |
|
schema=f"seacrowd_{_SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == f"seacrowd_{_SEACROWD_SCHEMA_NAME}": |
|
features = schemas.self_supervised_pretraining.features |
|
else: |
|
raise ValueError(f"Invalid config schema: {self.config.schema}") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
filepaths = [Path(dl_manager.download(_URL_BASE + url)) for url in _URLS] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepaths": filepaths}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths: List[Path]) -> Tuple[int, Dict]: |
|
counter = 0 |
|
for path in filepaths: |
|
data = pyreadr.read_r(path) |
|
text = " ".join([str(x) for x in data[list(data.keys())[0]]["text"].values]) |
|
if self.config.schema == "source": |
|
yield ( |
|
counter, |
|
{ |
|
"id": str(counter), |
|
"text": text.strip(), |
|
}, |
|
) |
|
elif self.config.schema == f"seacrowd_{_SEACROWD_SCHEMA_NAME}": |
|
yield ( |
|
counter, |
|
{ |
|
"id": str(counter), |
|
"text": text.strip(), |
|
}, |
|
) |
|
|
|
counter += 1 |
|
|