from pathlib import Path from typing import Dict, List, Tuple import datasets try: import pyreadr except: print("Install the `pyreadr` package to use.") from seacrowd.utils import schemas from seacrowd.utils.configs import SEACrowdConfig from seacrowd.utils.constants import (TASK_TO_SCHEMA, Licenses, Tasks) _DATASETNAME = "iatf" _CITATION = """\ @misc{ iatf, title={Inter-Agency Task Force for the Management of Emerging Infectious Diseases (IATF) COVID-19 Resolutions}, url={https://como-ph.github.io/post/creating-text-data-from-iatf-resolutions/}, author={Chris Mercado, John Robert Medina, Ernest Guevarra} } """ _DESCRIPTION = """\ To assess possible impact of various COVID-19 prediction models on Philippine government response, text from various resolutions issued by the Inter-agency Task Force for the Management of Emerging Infectious Diseases (IATF) has been collected using data mining approaches implemented in R. """ _HOMEPAGE = "https://github.com/como-ph/covidphtext/tree/master/data" _LICENSE = Licenses.GPL_3_0.value _SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING] _SEACROWD_SCHEMA_NAME = TASK_TO_SCHEMA[_SUPPORTED_TASKS[0]].lower() _LANGUAGES = ["fil"] _LOCAL = False _SOURCE_VERSION = "1.0.0" _SEACROWD_VERSION = "2024.06.20" _URL_BASE = "https://github.com/como-ph/covidphtext/raw/master/data/" _URLS = [ "iatfGuidelineOmnibus.rda", "iatfResolution01.rda", "iatfResolution02.rda", "iatfResolution03.rda", "iatfResolution04.rda", "iatfResolution05.rda", "iatfResolution06.rda", "iatfResolution07.rda", "iatfResolution08.rda", "iatfResolution09.rda", "iatfResolution10.rda", "iatfResolution11.rda", "iatfResolution12.rda", "iatfResolution13.rda", "iatfResolution14.rda", "iatfResolution15.rda", "iatfResolution16.rda", "iatfResolution17.rda", "iatfResolution18.rda", "iatfResolution19.rda", "iatfResolution20.rda", "iatfResolution21.rda", "iatfResolution22.rda", "iatfResolution23.rda", "iatfResolution24.rda", "iatfResolution25.rda", "iatfResolution26.rda", "iatfResolution27.rda", "iatfResolution28.rda", "iatfResolution29.rda", "iatfResolution30.rda", "iatfResolution30A.rda", "iatfResolution31.rda", "iatfResolution32.rda", "iatfResolution33.rda", "iatfResolution34.rda", "iatfResolution35.rda", "iatfResolution36.rda", "iatfResolution37.rda", "iatfResolution38.rda", "iatfResolution39.rda", "iatfResolution40.rda", "iatfResolution41.rda", "iatfResolution42.rda", "iatfResolution43.rda", "iatfResolution44.rda", "iatfResolution45.rda", "iatfResolution46.rda", "iatfResolution46A.rda", "iatfResolution47.rda", "iatfResolution48.rda", "iatfResolution49.rda", "iatfResolution50.rda", "iatfResolution50A.rda", "iatfResolution51.rda", "iatfResolution52.rda", "iatfResolution53.rda", "iatfResolution54.rda", "iatfResolution55.rda", "iatfResolution55A.rda", "iatfResolution56.rda", "iatfResolution57.rda", "iatfResolution58.rda", "iatfResolution59.rda", "iatfResolution60.rda", "iatfResolution60A.rda", ] class IATFDataset(datasets.GeneratorBasedBuilder): """Inter-agency Task Force for the Management of Emerging Infectious Diseases Dataset""" BUILDER_CONFIGS = [ SEACrowdConfig( name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=f"{_DATASETNAME} source schema", schema="source", subset_id=f"{_DATASETNAME}", ), SEACrowdConfig( name=f"{_DATASETNAME}_seacrowd_{_SEACROWD_SCHEMA_NAME}", version=datasets.Version(_SEACROWD_VERSION), description=f"{_DATASETNAME} seacrowd schema", schema=f"seacrowd_{_SEACROWD_SCHEMA_NAME}", subset_id=f"{_DATASETNAME}", ), ] DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" def _info(self) -> datasets.DatasetInfo: if self.config.schema == "source": features = datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), } ) elif self.config.schema == f"seacrowd_{_SEACROWD_SCHEMA_NAME}": features = schemas.self_supervised_pretraining.features else: raise ValueError(f"Invalid config schema: {self.config.schema}") return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: filepaths = [Path(dl_manager.download(_URL_BASE + url)) for url in _URLS] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths}, ), ] def _generate_examples(self, filepaths: List[Path]) -> Tuple[int, Dict]: counter = 0 for path in filepaths: data = pyreadr.read_r(path) text = " ".join([str(x) for x in data[list(data.keys())[0]]["text"].values]) if self.config.schema == "source": yield ( counter, { "id": str(counter), "text": text.strip(), }, ) elif self.config.schema == f"seacrowd_{_SEACROWD_SCHEMA_NAME}": yield ( counter, { "id": str(counter), "text": text.strip(), }, ) counter += 1