Upload icon.py with huggingface_hub
Browse files
icon.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dataclasses
|
2 |
+
from abc import ABC, abstractmethod
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, List, Optional, Tuple
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
import nltk
|
8 |
+
from nltk import Tree
|
9 |
+
from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader
|
10 |
+
|
11 |
+
from seacrowd.utils import schemas
|
12 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
13 |
+
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
|
14 |
+
DEFAULT_SOURCE_VIEW_NAME, Licenses,
|
15 |
+
Tasks)
|
16 |
+
|
17 |
+
_DATASETNAME = "icon"
|
18 |
+
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
|
19 |
+
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
|
20 |
+
_CITATION = """\
|
21 |
+
@inproceedings{lim2023icon,
|
22 |
+
title={ICON: Building a Large-Scale Benchmark Constituency Treebank for the Indonesian Language},
|
23 |
+
author={Lim, Ee Suan and Leong, Wei Qi and Nguyen, Ngan Thanh and Adhista, Dea and Kng, Wei Ming and Tjh, William Chandra and Purwarianti, Ayu},
|
24 |
+
booktitle={Proceedings of the 21st International Workshop on Treebanks and Linguistic Theories (TLT, GURT/SyntaxFest 2023)},
|
25 |
+
pages={37--53},
|
26 |
+
year={2023}
|
27 |
+
}
|
28 |
+
"""
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
ICON (Indonesian CONstituency treebank) is a large-scale high-quality constituency treebank (10000 sentences)
|
32 |
+
for the Indonesian language, sourced from Wikipedia and news data from Tempo, spanning the period from 1971 to 2016.
|
33 |
+
The annotation guidelines were formulated with the Penn Treebank POS tagging and bracketing guidelines as a reference,
|
34 |
+
with additional adaptations to account for the characteristics of the Indonesian language.
|
35 |
+
"""
|
36 |
+
|
37 |
+
_HOMEPAGE = "https://github.com/aisingapore/seacorenlp-data/tree/main/id/constituency"
|
38 |
+
|
39 |
+
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
|
40 |
+
_LANGUAGES = ["ind"]
|
41 |
+
_LOCAL = False
|
42 |
+
_URLS = {
|
43 |
+
"train": "https://raw.githubusercontent.com/aisingapore/seacorenlp-data/main/id/constituency/train.txt",
|
44 |
+
"validation": "https://raw.githubusercontent.com/aisingapore/seacorenlp-data/main/id/constituency/dev.txt",
|
45 |
+
"test": "https://raw.githubusercontent.com/aisingapore/seacorenlp-data/main/id/constituency/test.txt",
|
46 |
+
}
|
47 |
+
|
48 |
+
_SUPPORTED_TASKS = [Tasks.CONSTITUENCY_PARSING]
|
49 |
+
_SOURCE_VERSION = "1.0.0"
|
50 |
+
_SEACROWD_VERSION = "2024.06.20"
|
51 |
+
|
52 |
+
|
53 |
+
class ICONDataset(datasets.GeneratorBasedBuilder):
|
54 |
+
|
55 |
+
BUILDER_CONFIGS = [
|
56 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=_DESCRIPTION, schema="source", subset_id=f"{_DATASETNAME}"),
|
57 |
+
SEACrowdConfig(name=f"{_DATASETNAME}_seacrowd_tree", version=datasets.Version(_SEACROWD_VERSION), description=_DESCRIPTION, schema="seacrowd_tree", subset_id=f"{_DATASETNAME}"),
|
58 |
+
]
|
59 |
+
|
60 |
+
DEFAULT_CONFIG_NAME = "icon_source"
|
61 |
+
|
62 |
+
def _info(self) -> datasets.DatasetInfo:
|
63 |
+
if self.config.schema == "source":
|
64 |
+
features = datasets.Features(
|
65 |
+
{
|
66 |
+
"index": datasets.Value("string"), # index
|
67 |
+
"tree": datasets.Value("string"), # nltk.tree
|
68 |
+
"sentence": datasets.Value("string"), # bracketed sentence tree
|
69 |
+
"words": datasets.Sequence(datasets.Value("string")), # words
|
70 |
+
"POS": datasets.Sequence(datasets.Value("string")), # pos-tags
|
71 |
+
}
|
72 |
+
)
|
73 |
+
elif self.config.schema == "seacrowd_tree":
|
74 |
+
features = schemas.tree_features
|
75 |
+
|
76 |
+
else:
|
77 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
78 |
+
|
79 |
+
return datasets.DatasetInfo(
|
80 |
+
description=_DESCRIPTION,
|
81 |
+
features=features,
|
82 |
+
homepage=_HOMEPAGE,
|
83 |
+
license=_LICENSE,
|
84 |
+
citation=_CITATION,
|
85 |
+
)
|
86 |
+
|
87 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
88 |
+
|
89 |
+
train_txt = Path(dl_manager.download_and_extract(_URLS["train"]))
|
90 |
+
dev_txt = Path(dl_manager.download_and_extract(_URLS["validation"]))
|
91 |
+
test_txt = Path(dl_manager.download_and_extract(_URLS["test"]))
|
92 |
+
|
93 |
+
data_dir = {
|
94 |
+
"train": train_txt,
|
95 |
+
"validation": dev_txt,
|
96 |
+
"test": test_txt,
|
97 |
+
}
|
98 |
+
|
99 |
+
return [
|
100 |
+
datasets.SplitGenerator(
|
101 |
+
name=datasets.Split.TRAIN,
|
102 |
+
gen_kwargs={
|
103 |
+
"filepath": data_dir["train"],
|
104 |
+
"split": "train",
|
105 |
+
},
|
106 |
+
),
|
107 |
+
datasets.SplitGenerator(
|
108 |
+
name=datasets.Split.TEST,
|
109 |
+
gen_kwargs={
|
110 |
+
"filepath": data_dir["test"],
|
111 |
+
"split": "test",
|
112 |
+
},
|
113 |
+
),
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.VALIDATION,
|
116 |
+
gen_kwargs={
|
117 |
+
"filepath": data_dir["validation"],
|
118 |
+
"split": "dev",
|
119 |
+
},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
124 |
+
"""Yields examples as (key, example) tuples."""
|
125 |
+
trees = nltk_load_trees(filepath)
|
126 |
+
if self.config.schema == "source":
|
127 |
+
for idx, tree in enumerate(trees):
|
128 |
+
ex = {"index": str(idx), "tree": tree.tree, "words": tree.words, "sentence": tree.bra_sent, "POS": [itm[1] for itm in tree.pos()]}
|
129 |
+
yield idx, ex
|
130 |
+
if self.config.schema == "seacrowd_tree":
|
131 |
+
for idx, tree in enumerate(trees):
|
132 |
+
ex = get_node_char_indices_with_ids(tree.tree, str(idx))
|
133 |
+
yield idx, ex
|
134 |
+
|
135 |
+
|
136 |
+
class BaseInputExample(ABC):
|
137 |
+
"""Parser input for a single sentence (abstract interface)."""
|
138 |
+
|
139 |
+
words: List[str]
|
140 |
+
space_after: List[bool]
|
141 |
+
tree: Optional[nltk.Tree]
|
142 |
+
|
143 |
+
@abstractmethod
|
144 |
+
def leaves(self) -> Optional[List[str]]:
|
145 |
+
"""Returns leaves to use in the parse tree."""
|
146 |
+
pass
|
147 |
+
|
148 |
+
@abstractmethod
|
149 |
+
def pos(self) -> Optional[List[Tuple[str, str]]]:
|
150 |
+
"""Returns a list of (leaf, part-of-speech tag) tuples."""
|
151 |
+
pass
|
152 |
+
|
153 |
+
|
154 |
+
@dataclasses.dataclass
|
155 |
+
class ParsingExample(BaseInputExample):
|
156 |
+
"""A single parse tree and sentence."""
|
157 |
+
|
158 |
+
words: List[str]
|
159 |
+
bra_sent: str
|
160 |
+
tree: Optional[nltk.Tree] = None
|
161 |
+
_pos: Optional[List[Tuple[str, str]]] = None
|
162 |
+
|
163 |
+
def leaves(self) -> Optional[List[str]]:
|
164 |
+
return self.tree.leaves() if self.tree else None
|
165 |
+
|
166 |
+
def pos(self) -> Optional[List[Tuple[str, str]]]:
|
167 |
+
return self.tree.pos() if self.tree else self._pos
|
168 |
+
|
169 |
+
def without_gold_annotations(self) -> "ParsingExample":
|
170 |
+
return dataclasses.replace(self, tree=None, _pos=self.pos())
|
171 |
+
|
172 |
+
|
173 |
+
def nltk_load_trees(const_path: str) -> List[ParsingExample]:
|
174 |
+
reader = BracketParseCorpusReader("", [const_path])
|
175 |
+
trees = reader.parsed_sents()
|
176 |
+
with open(const_path, "r") as filein:
|
177 |
+
bracketed_sentences = [itm.strip() for itm in filein.readlines()]
|
178 |
+
sents = [tree.leaves() for tree in trees]
|
179 |
+
assert len(trees) == len(sents) == len(bracketed_sentences), f"Number Mismatched: {len(trees)} vs {len(bracketed_sentences)}"
|
180 |
+
treebank = [ParsingExample(tree=tree, words=words, bra_sent=bra_sent) for tree, bra_sent, words, in zip(trees, bracketed_sentences, sents)]
|
181 |
+
for example in treebank:
|
182 |
+
assert len(example.words) == len(example.leaves()), "Token count mismatch."
|
183 |
+
return treebank
|
184 |
+
|
185 |
+
|
186 |
+
def get_node_char_indices_with_ids(tree, sent_id):
|
187 |
+
def traverse_tree(subtree, start_index):
|
188 |
+
nonlocal node_id
|
189 |
+
current_id = node_id
|
190 |
+
node_id += 1
|
191 |
+
node_text = " ".join(subtree.leaves())
|
192 |
+
end_index = start_index + len(node_text)
|
193 |
+
|
194 |
+
# Record the current node
|
195 |
+
node_data = {
|
196 |
+
"id": f"{sent_id}_{current_id}",
|
197 |
+
"type": subtree.label(),
|
198 |
+
"text": node_text,
|
199 |
+
"offsets": [start_index, end_index],
|
200 |
+
"subnodes": [],
|
201 |
+
}
|
202 |
+
node_indices.append(node_data)
|
203 |
+
|
204 |
+
for child in subtree:
|
205 |
+
if isinstance(child, Tree):
|
206 |
+
child_id = traverse_tree(child, start_index)
|
207 |
+
node_data["subnodes"].append(child_id)
|
208 |
+
start_index += len(" ".join(child.leaves())) + 1
|
209 |
+
return f"{sent_id}_{current_id}"
|
210 |
+
|
211 |
+
node_indices = []
|
212 |
+
node_id = 0
|
213 |
+
traverse_tree(tree, 0)
|
214 |
+
sentence = " ".join(tree.leaves())
|
215 |
+
passage = {"id": "p" + sent_id, "type": None, "text": tree.leaves(), "offsets": [0, len(sentence)]}
|
216 |
+
return {"id": "s" + sent_id, "passage": passage, "nodes": node_indices}
|