|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{liu-etal-2021-am2ico, |
|
title = "{AM}2i{C}o: Evaluating Word Meaning in Context across Low-Resource Languages with Adversarial Examples", |
|
author = "Liu, Qianchu and |
|
Ponti, Edoardo Maria and |
|
McCarthy, Diana and |
|
Vuli{\'c}, Ivan and |
|
Korhonen, Anna", |
|
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", |
|
month = nov, |
|
year = "2021", |
|
address = "Online and Punta Cana, Dominican Republic", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.emnlp-main.571", |
|
doi = "10.18653/v1/2021.emnlp-main.571", |
|
pages = "7151--7162", |
|
abstract = "Capturing word meaning in context and distinguishing between correspondences and variations across languages is key to building successful multilingual and cross-lingual text representation models. However, existing multilingual evaluation datasets that evaluate lexical semantics {``}in-context{''} have various limitations. In particular, 1) their language coverage is restricted to high-resource languages and skewed in favor of only a few language families and areas, 2) a design that makes the task solvable via superficial cues, which results in artificially inflated (and sometimes super-human) performances of pretrained encoders, and 3) no support for cross-lingual evaluation. In order to address these gaps, we present AM2iCo (Adversarial and Multilingual Meaning in Context), a wide-coverage cross-lingual and multilingual evaluation set; it aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts for 14 language pairs. We conduct a series of experiments in a wide range of setups and demonstrate the challenging nature of AM2iCo. The results reveal that current SotA pretrained encoders substantially lag behind human performance, and the largest gaps are observed for low-resource languages and languages dissimilar to English.", |
|
} |
|
""" |
|
|
|
_LANGUAGES = ["ind", "eng"] |
|
_LOCAL = False |
|
|
|
_DATASETNAME = "id_am2ico" |
|
|
|
_DESCRIPTION = """\ |
|
In this work, we present AM2iCo, a wide-coverage and carefully designed cross-lingual and multilingual evaluation set; |
|
it aims to assess the ability of state-of-the-art representation models to reason over cross-lingual |
|
lexical-level concept alignment in context for 14 language pairs. |
|
|
|
This dataset only contain Indonesian - English language pair. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/cambridgeltl/AM2iCo" |
|
|
|
_LICENSE = "CC-BY 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://raw.githubusercontent.com/cambridgeltl/AM2iCo/master/data/id/train.tsv", |
|
"dev": "https://raw.githubusercontent.com/cambridgeltl/AM2iCo/master/data/id/dev.tsv", |
|
"test": "https://raw.githubusercontent.com/cambridgeltl/AM2iCo/master/data/id/test.tsv", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.CONCEPT_ALIGNMENT_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class NewDataset(datasets.GeneratorBasedBuilder): |
|
"""IndoCollex: A Testbed for Morphological Transformation of Indonesian |
|
Colloquial Words""" |
|
|
|
label_classes = ["T", "F"] |
|
|
|
BUILDER_CONFIGS = ( |
|
SEACrowdConfig( |
|
name="id_am2ico_source", |
|
version=_SOURCE_VERSION, |
|
description="Indonesia am2ico source schema", |
|
schema="source", |
|
subset_id="id_am2ico", |
|
), |
|
SEACrowdConfig( |
|
name="id_am2ico_seacrowd_pairs", |
|
version=_SEACROWD_VERSION, |
|
description="Indonesia am2ico Nusantara schema", |
|
schema="seacrowd_pairs", |
|
subset_id="id_am2ico", |
|
), |
|
) |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"no": datasets.Value("string"), |
|
"context1": datasets.Value("string"), |
|
"context2": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_pairs": |
|
features = schemas.pairs_features(self.label_classes) |
|
|
|
else: |
|
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators( |
|
self, dl_manager: datasets.DownloadManager |
|
) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
|
|
urls = _URLS[self.config.subset_id] |
|
|
|
data_paths = dl_manager.download(urls) |
|
|
|
ret = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_paths["train"]}, |
|
) |
|
] |
|
|
|
if len(data_paths) > 1: |
|
ret.extend( |
|
[ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_paths["test"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": data_paths["dev"]}, |
|
), |
|
] |
|
) |
|
|
|
return ret |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
|
|
df = pd.read_csv(filepath, sep="\t") |
|
|
|
if self.config.schema == "source": |
|
for row in df.itertuples(): |
|
ex = { |
|
"no": str(row.Index), |
|
"context1": str(row.context1).rstrip(), |
|
"context2": str(row.context2).rstrip(), |
|
"label": str(row.label).rstrip(), |
|
} |
|
yield row.Index, ex |
|
|
|
elif self.config.schema == "seacrowd_pairs": |
|
for row in df.itertuples(): |
|
ex = { |
|
"id": str(row.Index), |
|
"text_1": str(row.context1).rstrip(), |
|
"text_2": str(row.context2).rstrip(), |
|
"label": str(row.label).rstrip(), |
|
} |
|
yield row.Index, ex |
|
|