holylovenia
commited on
Commit
•
31568bd
1
Parent(s):
cd0f166
Upload id_coreference_resolution.py with huggingface_hub
Browse files- id_coreference_resolution.py +208 -0
id_coreference_resolution.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from typing import Dict, List, Tuple
|
4 |
+
from nusacrowd.utils.constants import Tasks
|
5 |
+
from nusacrowd.utils import schemas
|
6 |
+
|
7 |
+
import datasets
|
8 |
+
import json
|
9 |
+
import xml.etree.ElementTree as ET
|
10 |
+
|
11 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
12 |
+
|
13 |
+
_CITATION = """\
|
14 |
+
@INPROCEEDINGS{8074648,
|
15 |
+
author={Suherik, Gilang Julian and Purwarianti, Ayu},
|
16 |
+
booktitle={2017 5th International Conference on Information and Communication Technology (ICoIC7)},
|
17 |
+
title={Experiments on coreference resolution for Indonesian language with lexical and shallow syntactic features},
|
18 |
+
year={2017},
|
19 |
+
volume={},
|
20 |
+
number={},
|
21 |
+
pages={1-5},
|
22 |
+
doi={10.1109/ICoICT.2017.8074648}}
|
23 |
+
"""
|
24 |
+
|
25 |
+
_LANGUAGES = ["ind"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
26 |
+
_LOCAL = False
|
27 |
+
|
28 |
+
_DATASETNAME = "id_coreference_resolution"
|
29 |
+
|
30 |
+
_DESCRIPTION = """\
|
31 |
+
We built Indonesian coreference resolution that solves not only pronoun referenced to proper noun, but also proper noun to proper noun and pronoun to pronoun.
|
32 |
+
The differences with the available Indonesian coreference resolution lay on the problem scope and features.
|
33 |
+
We conducted experiments using various features (lexical and shallow syntactic features) such as appositive feature, nearest candidate feature, direct sentence feature, previous and next word feature, and a lexical feature of first person.
|
34 |
+
We also modified the method to build the training set by selecting the negative examples by cross pairing every single markable that appear between antecedent and anaphor.
|
35 |
+
Compared with two available methods to build the training set, we conducted experiments using C45 algorithm.
|
36 |
+
Using 200 news sentences, the best experiment achieved 71.6% F-Measure score.
|
37 |
+
"""
|
38 |
+
|
39 |
+
_HOMEPAGE = "https://github.com/tugas-akhir-nlp/indonesian-coreference-resolution-cnn/tree/master/data"
|
40 |
+
|
41 |
+
_LICENSE = "Creative Commons Attribution-ShareAlike 4.0"
|
42 |
+
|
43 |
+
_URLS = {
|
44 |
+
_DATASETNAME: {
|
45 |
+
"train": "https://raw.githubusercontent.com/tugas-akhir-nlp/indonesian-coreference-resolution-cnn/master/data/training/data.xml",
|
46 |
+
"test": "https://raw.githubusercontent.com/tugas-akhir-nlp/indonesian-coreference-resolution-cnn/master/data/testing/data.xml"
|
47 |
+
}
|
48 |
+
}
|
49 |
+
|
50 |
+
_SUPPORTED_TASKS = [Tasks.COREFERENCE_RESOLUTION]
|
51 |
+
|
52 |
+
_SOURCE_VERSION = "1.0.0"
|
53 |
+
|
54 |
+
_NUSANTARA_VERSION = "1.0.0"
|
55 |
+
|
56 |
+
class IDCoreferenceResolution(datasets.GeneratorBasedBuilder):
|
57 |
+
|
58 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
59 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
60 |
+
|
61 |
+
BUILDER_CONFIGS = [
|
62 |
+
NusantaraConfig(
|
63 |
+
name="id_coreference_resolution_source",
|
64 |
+
version=SOURCE_VERSION,
|
65 |
+
description="ID Coreference Resolution source schema",
|
66 |
+
schema="source",
|
67 |
+
subset_id="id_coreference_resolution",
|
68 |
+
),
|
69 |
+
NusantaraConfig(
|
70 |
+
name="id_coreference_resolution_nusantara_kb",
|
71 |
+
version=NUSANTARA_VERSION,
|
72 |
+
description="ID Coreference Resolution Nusantara schema",
|
73 |
+
schema="nusantara_kb",
|
74 |
+
subset_id="id_coreference_resolution",
|
75 |
+
),
|
76 |
+
]
|
77 |
+
|
78 |
+
DEFAULT_CONFIG_NAME = "id_coreference_resolution_source"
|
79 |
+
|
80 |
+
def _info(self) -> datasets.DatasetInfo:
|
81 |
+
|
82 |
+
if self.config.schema == "source":
|
83 |
+
features = datasets.Features(
|
84 |
+
{
|
85 |
+
"id": datasets.Value("string"),
|
86 |
+
"phrases": [
|
87 |
+
{
|
88 |
+
"id": datasets.Value("string"),
|
89 |
+
"type": datasets.Value("string"),
|
90 |
+
"text": [
|
91 |
+
{
|
92 |
+
"word": datasets.Value("string"),
|
93 |
+
"ne": datasets.Value("string"),
|
94 |
+
"label": datasets.Value("string")
|
95 |
+
}
|
96 |
+
]
|
97 |
+
}
|
98 |
+
]
|
99 |
+
}
|
100 |
+
)
|
101 |
+
|
102 |
+
elif self.config.schema == "nusantara_kb":
|
103 |
+
features = schemas.kb_features
|
104 |
+
|
105 |
+
return datasets.DatasetInfo(
|
106 |
+
description=_DESCRIPTION,
|
107 |
+
features=features,
|
108 |
+
homepage=_HOMEPAGE,
|
109 |
+
license=_LICENSE,
|
110 |
+
citation=_CITATION,
|
111 |
+
)
|
112 |
+
|
113 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
114 |
+
urls = _URLS[_DATASETNAME]
|
115 |
+
|
116 |
+
data_dir = dl_manager.download_and_extract(urls)
|
117 |
+
|
118 |
+
return [
|
119 |
+
datasets.SplitGenerator(
|
120 |
+
name=datasets.Split.TRAIN,
|
121 |
+
gen_kwargs={
|
122 |
+
"filepath": data_dir["train"],
|
123 |
+
"split": "train",
|
124 |
+
},
|
125 |
+
),
|
126 |
+
datasets.SplitGenerator(
|
127 |
+
name=datasets.Split.TEST,
|
128 |
+
gen_kwargs={
|
129 |
+
"filepath": data_dir["test"],
|
130 |
+
"split": "test",
|
131 |
+
},
|
132 |
+
),
|
133 |
+
]
|
134 |
+
|
135 |
+
def _parse_phrase(self, phrase):
|
136 |
+
splitted_text = phrase.text.split(" ")
|
137 |
+
splitted_ne = []
|
138 |
+
if ("ne" in phrase.attrib):
|
139 |
+
splitted_ne = phrase.attrib["ne"].split("|")
|
140 |
+
words = []
|
141 |
+
for i in range(0, len(splitted_text)):
|
142 |
+
word = splitted_text[i].split("\\")
|
143 |
+
ne = ""
|
144 |
+
label = ""
|
145 |
+
if (i < len(splitted_ne)):
|
146 |
+
ne = splitted_ne[i]
|
147 |
+
if (len(word) > 1):
|
148 |
+
label = word[1]
|
149 |
+
words.append({
|
150 |
+
"word": word[0],
|
151 |
+
"ne": ne,
|
152 |
+
"label": label
|
153 |
+
})
|
154 |
+
|
155 |
+
id = ""
|
156 |
+
|
157 |
+
if ("id" in phrase.attrib):
|
158 |
+
id = phrase.attrib["id"]
|
159 |
+
|
160 |
+
return {
|
161 |
+
"id": id,
|
162 |
+
"type": phrase.attrib["type"],
|
163 |
+
"text": words
|
164 |
+
}
|
165 |
+
|
166 |
+
|
167 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
168 |
+
data = ET.parse(filepath).getroot()
|
169 |
+
|
170 |
+
for each_sentence in data:
|
171 |
+
sentence = {
|
172 |
+
"id": each_sentence.attrib["id"],
|
173 |
+
"phrases": [],
|
174 |
+
}
|
175 |
+
for phrase in each_sentence:
|
176 |
+
parsed_phrase = self._parse_phrase(phrase)
|
177 |
+
sentence["phrases"].append(parsed_phrase)
|
178 |
+
|
179 |
+
if self.config.schema == "source":
|
180 |
+
yield int(each_sentence.attrib["id"]), sentence
|
181 |
+
|
182 |
+
elif self.config.schema == "nusantara_kb":
|
183 |
+
ex = {
|
184 |
+
"id": each_sentence.attrib["id"],
|
185 |
+
"passages": [],
|
186 |
+
"entities": [
|
187 |
+
{
|
188 |
+
"id": phrase["id"],
|
189 |
+
"type": phrase["type"],
|
190 |
+
"text": [text["word"] for text in phrase["text"]],
|
191 |
+
"offsets": [[0, len(text["word"])] for text in phrase["text"]],
|
192 |
+
"normalized": [{
|
193 |
+
"db_name": text["ne"],
|
194 |
+
"db_id": ""
|
195 |
+
} for text in phrase["text"]],
|
196 |
+
}
|
197 |
+
for phrase in sentence["phrases"]
|
198 |
+
],
|
199 |
+
"coreferences": [
|
200 |
+
{
|
201 |
+
"id": each_sentence.attrib["id"],
|
202 |
+
"entity_ids": [phrase["id"] for phrase in sentence["phrases"]]
|
203 |
+
}
|
204 |
+
],
|
205 |
+
"events": [],
|
206 |
+
"relations": [],
|
207 |
+
}
|
208 |
+
yield int(each_sentence.attrib["id"]), ex
|