|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import DEFAULT_SEACROWD_VIEW_NAME, DEFAULT_SOURCE_VIEW_NAME, Tasks |
|
|
|
_DATASETNAME = "id_hoax_news" |
|
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME |
|
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@INPROCEEDINGS{8265649, author={Pratiwi, Inggrid Yanuar Risca and Asmara, Rosa Andrie and Rahutomo, Faisal}, booktitle={2017 11th International Conference on Information & Communication Technology and System (ICTS)}, title={Study of hoax news detection using naïve bayes classifier in Indonesian language}, year={2017}, volume={}, number={}, pages={73-78}, doi={10.1109/ICTS.2017.8265649}} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This research proposes to build an automatic hoax news detection and collects 250 pages of hoax and valid news articles in Indonesian language. |
|
Each data sample is annotated by three reviewers and the final taggings are obtained by voting of those three reviewers. |
|
""" |
|
|
|
_HOMEPAGE = "https://data.mendeley.com/datasets/p3hfgr5j3m/1" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0 International" |
|
|
|
_URLs = { |
|
"train": "https://data.mendeley.com/public-files/datasets/p3hfgr5j3m/files/38bfcff2-8a32-4920-9c26-4f63b5b2dad8/file_downloaded", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IdHoaxNews(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="id_hoax_news_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="Hoax News source schema", |
|
schema="source", |
|
subset_id="id_hoax_news", |
|
), |
|
SEACrowdConfig( |
|
name="id_hoax_news_seacrowd_text", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="Hoax News Nusantara schema", |
|
schema="seacrowd_text", |
|
subset_id="id_hoax_news", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "id_hoax_news_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("string"), |
|
"news": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_text": |
|
features = schemas.text_features(["Valid", "Hoax"]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"])) |
|
data_files = { |
|
"train": train_tsv_path / "250 news with valid hoax label.csv", |
|
} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": data_files["train"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
news_file = open(filepath, 'r', encoding='ISO-8859-1') |
|
lines = news_file.readlines() |
|
news = [] |
|
labels = [] |
|
|
|
curr_news = '' |
|
for l in lines[1:]: |
|
l = l.replace('\n', '') |
|
if ';Valid' in l: |
|
curr_news += l.replace(';Valid', '') |
|
news.append(curr_news) |
|
labels.append('Valid') |
|
curr_news = '' |
|
elif ';Hoax' in l: |
|
curr_news += l.replace(';Hoax', '') |
|
news.append(curr_news) |
|
labels.append('Hoax') |
|
curr_news = '' |
|
else: |
|
curr_news += l + ' ' |
|
|
|
if self.config.schema == "source": |
|
for i in range(len(news)): |
|
ex = {"index": str(i), "news": news[i], "label": labels[i]} |
|
yield i, ex |
|
elif self.config.schema == "seacrowd_text": |
|
for i in range(len(news)): |
|
ex = {"id": str(i), "text": news[i], "label": labels[i]} |
|
yield i, ex |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|