File size: 4,995 Bytes
76d3709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@misc{feryandi2018,
author={Nurdiantoro, Feryandi}
title={Dataset-Artikel},
year = {2018},
url = {https://github.com/feryandi/Dataset-Artikel},
}
"""
_DATASETNAME = "id_newspaper_2018"
_DESCRIPTION = """\
The ID Newspapers 2018 dataset provides 500K articles from various Indonesian news sources. Articles were taken from
7 primary sources (Detik, Kompas, Tempo, CNN Indonesia, Sindo, Republika, Poskota). The compressed files can be
retrieved from datahttps://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018.
"""
_HOMEPAGE = "https://github.com/feryandi/Dataset-Artikel"
_LANGUAGES = ["ind"]
_LICENSE = Licenses.CC_BY_SA_4_0.value
_LOCAL = False
_URLS = "https://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018/resolve/main/newspapers-json.tgz"
_SUPPORTED_TASKS = [Tasks.SELF_SUPERVISED_PRETRAINING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class IDNewspapers2018Dataset(datasets.GeneratorBasedBuilder):
"""
ID Newspapers 2018 is a pretraining dataset from https://huggingface.co/datasets/indonesian-nlp/id_newspapers_2018.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_ssp",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} SEACrowd schema",
schema="seacrowd_ssp",
subset_id=f"{_DATASETNAME}",
),
]
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features({"url": datasets.Value("string"), "date": datasets.Value("string"), "title": datasets.Value("string"), "content": datasets.Value("string")})
elif self.config.schema == "seacrowd_ssp":
features = schemas.ssp_features
else:
raise ValueError(f"Invalid schema: '{self.config.schema}'")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""
Returns SplitGenerators.
"""
path = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"path": path,
"split": "train",
},
)
]
def _generate_examples(self, path: Path, split: str) -> Tuple[int, Dict]:
"""
Yields examples as (key, example) tuples.
"""
file_paths = []
for path, subdirs, files in os.walk(path):
for name in files:
if name[-5:] == ".json":
file_paths.append(os.path.join(path, name))
for idx, file_path in enumerate(file_paths):
with open(file_path, "r", encoding="utf-8") as file:
data = json.load(file)
if self.config.schema == "source":
x = {
"url": data["url"],
"date": data["date"],
"title": data["title"],
"content": data["content"],
}
yield idx, x
elif self.config.schema == "seacrowd_ssp":
x = {
"id": str(idx),
"text": data["content"],
}
yield idx, x
else:
raise ValueError(f"Invalid schema: '{self.config.schema}'")
|