File size: 9,123 Bytes
a20b20b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from nusacrowd.nusa_datasets.id_short_answer_grading.utils.id_short_answer_grading_utils import \
create_saintek_and_soshum_dataset
from nusacrowd.utils import schemas
from nusacrowd.utils.configs import NusantaraConfig
from nusacrowd.utils.constants import Tasks
_CITATION = """\
@article{
JLK,
author = {Muh Haidir and Ayu Purwarianti},
title = { Short Answer Grading Using Contextual Word Embedding and Linear Regression},
journal = {Jurnal Linguistik Komputasional},
volume = {3},
number = {2},
year = {2020},
keywords = {},
abstract = {Abstract—One of the obstacles in an efficient MOOC is the evaluation of student answers, including the short answer grading which requires large effort from instructors to conduct it manually.
Thus, NLP research in short answer grading has been conducted in order to support the automation, using several techniques such as rule
and machine learning based. Here, we’ve conducted experiments on deep learning based short answer grading to compare the answer
representation and answer assessment method. In the answer representation, we compared word embedding and sentence embedding models
such as BERT, and its modification. In the answer assessment method, we use linear regression. There are 2 datasets that we used, available
English short answer grading dataset with 80 questions and 2442 to get the best configuration for model and Indonesian short answer grading
dataset with 36 questions and 9165 short answers as testing data. Here, we’ve collected Indonesian short answers for Biology and Geography
subjects from 534 respondents where the answer grading was done by 7 experts. The best root mean squared error for both dataset was achieved
by using BERT pretrained, 0.880 for English dataset dan 1.893 for Indonesian dataset.},
issn = {2621-9336}, pages = {54--61}, doi = {10.26418/jlk.v3i2.38},
url = {https://inacl.id/journal/index.php/jlk/article/view/38}
}\
"""
_DATASETNAME = "id_short_answer_grading"
_DESCRIPTION = """\
Indonesian short answers for Biology and Geography subjects from 534 respondents where the answer grading was done by 7 experts.\
"""
_HOMEPAGE = "https://github.com/AgeMagi/tugas-akhir"
_LOCAL = False
_LANGUAGES = ["ind"]
_LICENSE = "Unknown"
_URLS = {
"saintek": {
"train": {
"question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-saintek.csv",
"score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-saintek.csv",
},
"test": {
"question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-saintek-test.csv",
"score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-saintek-test.csv",
},
},
"soshum": {
"train": {
"question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-soshum.csv",
"score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-soshum.csv",
},
"test": {
"question": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/question-soshum-test.csv",
"score": "https://raw.githubusercontent.com/AgeMagi/tugas-akhir/master/data/score-soshum-test.csv",
},
},
}
_SUPPORTED_TASKS = [Tasks.SHORT_ANSWER_GRADING]
_SOURCE_VERSION = "1.0.0"
_NUSANTARA_VERSION = "1.0.0"
class IdShortAnswerGrading(datasets.GeneratorBasedBuilder):
"""Indonesian short answers for Biology and Geography subjects from 534 respondents where the answer grading was done by 7 experts."""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
BUILDER_CONFIGS = [
NusantaraConfig(
name="id_short_answer_grading_source",
version=SOURCE_VERSION,
description="id_short_answer_grading source schema",
schema="source",
subset_id="id_short_answer_grading",
),
NusantaraConfig(
name="id_short_answer_grading_nusantara_pairs_score",
version=NUSANTARA_VERSION,
description="id_short_answer_grading Nusantara schema",
schema="nusantara_pairs_score",
subset_id="id_short_answer_grading",
),
]
DEFAULT_CONFIG_NAME = "id_short_answer_grading_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"index": datasets.Value("int64"),
"type-problem": datasets.Value("int64"),
"pertanyaan": datasets.Value("string"),
"kunci-jawaban": datasets.Value("string"),
"jawaban": datasets.Value("string"),
"score": datasets.Value("int64"),
}
)
elif self.config.schema == "nusantara_pairs_score":
features = schemas.pairs_features([0, 1, 2, 3, 4, 5])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
saintek_question = Path(dl_manager.download_and_extract(_URLS["saintek"]["train"]["question"]))
saintek_score = Path(dl_manager.download_and_extract(_URLS["saintek"]["train"]["score"]))
saintek_question_test = Path(dl_manager.download_and_extract(_URLS["saintek"]["test"]["question"]))
saintek_score_test = Path(dl_manager.download_and_extract(_URLS["saintek"]["test"]["score"]))
soshum_question = Path(dl_manager.download_and_extract(_URLS["soshum"]["train"]["question"]))
soshum_score = Path(dl_manager.download_and_extract(_URLS["soshum"]["train"]["score"]))
soshum_question_test = Path(dl_manager.download_and_extract(_URLS["soshum"]["test"]["question"]))
soshum_score_test = Path(dl_manager.download_and_extract(_URLS["soshum"]["test"]["score"]))
data_files = {
"saintek_question": saintek_question,
"saintek_score": saintek_score,
"saintek_question_test": saintek_question_test,
"saintek_score_test": saintek_score_test,
"soshum_question": soshum_question,
"soshum_score": soshum_score,
"soshum_question_test": soshum_question_test,
"soshum_score_test": soshum_score_test,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"saintek_question": os.path.join(data_files["saintek_question"]),
"soshum_question": os.path.join(data_files["soshum_question"]),
"saintek_score": os.path.join(data_files["saintek_score"]),
"soshum_score": os.path.join(data_files["soshum_score"]),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"saintek_question": os.path.join(data_files["saintek_question_test"]),
"soshum_question": os.path.join(data_files["soshum_question_test"]),
"saintek_score": os.path.join(data_files["saintek_score_test"]),
"soshum_score": os.path.join(data_files["soshum_score_test"]),
"split": "test",
},
),
]
def _generate_examples(self, saintek_question: Path, soshum_question: Path, saintek_score: Path, soshum_score: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
df = create_saintek_and_soshum_dataset(saintek_question, soshum_question, saintek_score, soshum_score)
if self.config.schema == "source":
for row in df.itertuples():
entry = {
"index": row.index,
"type-problem": row.type_problem,
"pertanyaan": row.pertanyaan,
"kunci-jawaban": row.kunci_jawaban,
"jawaban": row.jawaban,
"score": row.score,
}
yield row.index, entry
elif self.config.schema == "nusantara_pairs_score":
for row in df.itertuples():
entry = {
"id": str(row.index),
"text_1": row.pertanyaan,
"text_2": row.jawaban,
"label": row.score,
}
yield row.index, entry
|