|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import re |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@misc{putri2022idk, |
|
doi = {10.48550/ARXIV.2210.13778}, |
|
url = {https://arxiv.org/abs/2210.13778}, |
|
author = {Putri, Rifki Afina and Oh, Alice}, |
|
title = {IDK-MRC: Unanswerable Questions for Indonesian Machine Reading Comprehension}, |
|
publisher = {arXiv}, |
|
year = {2022} |
|
} |
|
|
|
""" |
|
|
|
_LANGUAGES = ["ind"] |
|
_LOCAL = False |
|
|
|
_ALL_DATASETS = ["idk_mrc", "trans_squad", "tydiqa", "model_gen", "human_filt"] |
|
_DATASETNAME = _ALL_DATASETS[0] |
|
_BASELINES = _ALL_DATASETS[1:] |
|
|
|
_DESCRIPTION = """\ |
|
I(n)dontKnow-MRC (IDK-MRC) is an Indonesian Machine Reading Comprehension dataset that covers |
|
answerable and unanswerable questions. Based on the combination of the existing answerable questions in TyDiQA, |
|
the new unanswerable question in IDK-MRC is generated using a question generation model and human-written question. |
|
Each paragraph in the dataset has a set of answerable and unanswerable questions with the corresponding answer. |
|
|
|
Besides IDK-MRC (idk_mrc) dataset, several baseline datasets also provided: |
|
1. Trans SQuAD (trans_squad): machine translated SQuAD 2.0 (Muis and Purwarianti, 2020) |
|
2. TyDiQA (tydiqa): Indonesian answerable questions set from the TyDiQA-GoldP (Clark et al., 2020) |
|
3. Model Gen (model_gen): TyDiQA + the unanswerable questions output from the question generation model |
|
4. Human Filt (human_filt): Model Gen dataset that has been filtered by human annotator |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/rifkiaputri/IDK-MRC" |
|
|
|
_LICENSE = "CC-BY-SA 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"test": "https://raw.githubusercontent.com/rifkiaputri/IDK-MRC/master/dataset/idk_mrc/test.json", |
|
"train": "https://raw.githubusercontent.com/rifkiaputri/IDK-MRC/master/dataset/idk_mrc/train.json", |
|
"validation": "https://raw.githubusercontent.com/rifkiaputri/IDK-MRC/master/dataset/idk_mrc/valid.json", |
|
}, |
|
"baseline": { |
|
"test": "https://raw.githubusercontent.com/rifkiaputri/IDK-MRC/master/dataset/baseline/{name}/test.json", |
|
"train": "https://raw.githubusercontent.com/rifkiaputri/IDK-MRC/master/dataset/baseline/{name}/train.json", |
|
"validation": "https://raw.githubusercontent.com/rifkiaputri/IDK-MRC/master/dataset/baseline/{name}/valid.json", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
def seacrowd_config_constructor(name, schema, version): |
|
""" |
|
Construct SEACrowdConfig with idk_mrc_{schema} format for the main dataset & |
|
idk_mrc_baseline_{name}_{schema} format for the baseline datasets. |
|
Suported dataset names: see _ALL_DATASETS |
|
""" |
|
if schema != "source" and schema != "seacrowd_qa": |
|
raise ValueError(f"Invalid schema: {schema}") |
|
|
|
if name not in _ALL_DATASETS: |
|
raise ValueError(f"Invalid dataset name: {name}") |
|
|
|
if name == "idk_mrc": |
|
return SEACrowdConfig( |
|
name="idk_mrc_{schema}".format(schema=schema), |
|
version=datasets.Version(version), |
|
description="IDK-MRC with {schema} schema".format(schema=schema), |
|
schema=schema, |
|
subset_id="idk_mrc", |
|
) |
|
else: |
|
return SEACrowdConfig( |
|
name="idk_mrc_baseline_{name}_{schema}".format(name=name, schema=schema), |
|
version=datasets.Version(version), |
|
description="IDK-MRC baseline ({name}) with {schema} schema".format(name=name, schema=schema), |
|
schema=schema, |
|
subset_id="idk_mrc", |
|
) |
|
|
|
|
|
class IdkMrc(datasets.GeneratorBasedBuilder): |
|
"""IDK-MRC is an Indonesian MRC dataset that covers answerable and unanswerable questions""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
seacrowd_config_constructor(name, schema, version) |
|
for name in _ALL_DATASETS for schema, version in zip(["source", "seacrowd_qa"], [_SOURCE_VERSION, _SEACROWD_VERSION]) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "idk_mrc_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"context": datasets.Value("string"), |
|
"qas": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"is_impossible": datasets.Value("bool"), |
|
"question": datasets.Value("string"), |
|
"answers": [ |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int64") |
|
} |
|
] |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.name == "idk_mrc_source" or self.config.name == "idk_mrc_seacrowd_qa": |
|
data_name = "idk_mrc" |
|
train_data_path = dl_manager.download_and_extract(_URLS[_DATASETNAME]["train"]) |
|
validation_data_path = dl_manager.download_and_extract(_URLS[_DATASETNAME]["validation"]) |
|
test_data_path = dl_manager.download_and_extract(_URLS[_DATASETNAME]["test"]) |
|
else: |
|
try: |
|
data_name = re.search("baseline_(.+?)_(source|seacrowd_qa)", self.config.name).group(1) |
|
except AttributeError: |
|
raise ValueError(f"Invalid config name: {self.config.name}") |
|
|
|
if data_name not in _BASELINES: |
|
raise ValueError(f"Invalid baseline dataset name: {data_name}") |
|
|
|
train_data_path = dl_manager.download_and_extract(_URLS["baseline"]["train"].format(name=data_name)) |
|
validation_data_path = dl_manager.download_and_extract(_URLS["baseline"]["validation"].format(name=data_name)) |
|
test_data_path = dl_manager.download_and_extract(_URLS["baseline"]["test"].format(name=data_name)) if data_name != "trans_squad" else "" |
|
|
|
data_split = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_data_path, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(validation_data_path), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(test_data_path), |
|
}, |
|
), |
|
] |
|
|
|
if data_name == "trans_squad": |
|
|
|
return data_split[:2] |
|
|
|
return data_split |
|
|
|
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]: |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath) as json_file: |
|
examples = json.load(json_file) |
|
|
|
if self.config.schema == "source": |
|
|
|
|
|
|
|
for key, example in enumerate(examples): |
|
yield key, example |
|
|
|
elif self.config.schema == "seacrowd_qa": |
|
for key, example in enumerate(examples): |
|
for qa in example["qas"]: |
|
|
|
yield str(qa["id"]), { |
|
"id": qa["id"], |
|
"question_id": qa["id"], |
|
"document_id": str(key), |
|
"question": qa["question"], |
|
"type": "extractive", |
|
"choices": [], |
|
"context": example["context"], |
|
"answer": [ans["text"] for ans in qa["answers"]], |
|
"meta": {} |
|
} |
|
|