|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.common_parser import load_conll_data |
|
|
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@INPROCEEDINGS{8275098, |
|
author={Gultom, Yohanes and Wibowo, Wahyu Catur}, |
|
booktitle={2017 International Workshop on Big Data and Information Security (IWBIS)}, |
|
title={Automatic open domain information extraction from Indonesian text}, |
|
year={2017}, |
|
volume={}, |
|
number={}, |
|
pages={23-30}, |
|
doi={10.1109/IWBIS.2017.8275098}} |
|
|
|
@article{DBLP:journals/corr/abs-2011-00677, |
|
author = {Fajri Koto and |
|
Afshin Rahimi and |
|
Jey Han Lau and |
|
Timothy Baldwin}, |
|
title = {IndoLEM and IndoBERT: {A} Benchmark Dataset and Pre-trained Language |
|
Model for Indonesian {NLP}}, |
|
journal = {CoRR}, |
|
volume = {abs/2011.00677}, |
|
year = {2020}, |
|
url = {https://arxiv.org/abs/2011.00677}, |
|
eprinttype = {arXiv}, |
|
eprint = {2011.00677}, |
|
timestamp = {Fri, 06 Nov 2020 15:32:47 +0100}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2011-00677.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indolem_nerui" |
|
|
|
_DESCRIPTION = """\ |
|
NER UI is a Named Entity Recognition dataset that contains 2,125 sentences obtained via an annotation assignment in an NLP course at the University of Indonesia in 2016. |
|
The corpus has three named entity classes: location, organisation, and person with training/dev/test distribution: 1,530/170/42 and based on 5-fold cross validation. |
|
""" |
|
|
|
_HOMEPAGE = "https://indolem.github.io/" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0" |
|
|
|
_URLS = { |
|
_DATASETNAME: [ |
|
{ |
|
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.01.tsv", |
|
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.01.tsv", |
|
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.01.tsv", |
|
}, |
|
{ |
|
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.02.tsv", |
|
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.02.tsv", |
|
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.02.tsv", |
|
}, |
|
{ |
|
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.03.tsv", |
|
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.03.tsv", |
|
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.03.tsv", |
|
}, |
|
{ |
|
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.04.tsv", |
|
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.04.tsv", |
|
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.04.tsv", |
|
}, |
|
{ |
|
"train": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/train.05.tsv", |
|
"validation": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/dev.05.tsv", |
|
"test": "https://raw.githubusercontent.com/indolem/indolem/main/ner/data/nerui/test.05.tsv", |
|
}, |
|
] |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndolemNERUIDataset(datasets.GeneratorBasedBuilder): |
|
"""NER UI contains 2,125 sentences obtained via an annotation assignment in an NLP course at the University of Indonesia. The corpus has three named entity classes: location, organisation, and person; and based on 5-fold cross validation.""" |
|
|
|
label_classes = [ |
|
"O", |
|
"B-LOCATION", |
|
"B-ORGANIZATION", |
|
"B-PERSON", |
|
"I-LOCATION", |
|
"I-ORGANIZATION", |
|
"I-PERSON", |
|
] |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"indolem_nerui_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="Indolem NER UI source schema", |
|
schema="source", |
|
subset_id=f"indolem_nerui", |
|
), |
|
SEACrowdConfig( |
|
name=f"indolem_nerui_seacrowd_seq_label", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="Indolem NER UI Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id=f"indolem_nerui", |
|
) |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"indolem_nerui_fold{i}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description="Indolem NER UI source schema", |
|
schema="source", |
|
subset_id=f"indolem_nerui_fold{i}", |
|
) |
|
for i in range(5) |
|
] + [ |
|
SEACrowdConfig( |
|
name=f"indolem_nerui_fold{i}_seacrowd_seq_label", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description="Indolem NER UI Nusantara schema", |
|
schema="seacrowd_seq_label", |
|
subset_id=f"indolem_nerui_fold{i}", |
|
) |
|
for i in range(5) |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indolem_nerui_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"index": datasets.Value("string"), |
|
"tokens": [datasets.Value("string")], |
|
"tags": [datasets.Value("string")], |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label_features(self.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
idx = self._get_fold_index() |
|
urls = _URLS[_DATASETNAME][idx] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
conll_dataset = load_conll_data(filepath) |
|
|
|
if self.config.schema == "source": |
|
for i, row in enumerate(conll_dataset): |
|
ex = { |
|
"index": str(i), |
|
"tokens": row["sentence"], |
|
"tags": row["label"], |
|
} |
|
yield i, ex |
|
|
|
elif self.config.schema == "seacrowd_seq_label": |
|
for i, row in enumerate(conll_dataset): |
|
ex = { |
|
"id": str(i), |
|
"tokens": row["sentence"], |
|
"labels": row["label"], |
|
} |
|
yield i, ex |
|
|
|
def _get_fold_index(self): |
|
try: |
|
subset_id = self.config.subset_id |
|
idx_fold = subset_id.index("_fold") |
|
file_id = subset_id[(idx_fold + 5):] |
|
return int(file_id) |
|
except: |
|
|
|
return 0 |
|
|