|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
IndoNLI is the first human-elicited Natural Language Inference (NLI) dataset for Indonesian. |
|
IndoNLI is annotated by both crowd workers and experts. The expert-annotated data is used exclusively as a test set. |
|
It is designed to provide a challenging test-bed for Indonesian NLI by explicitly incorporating various linguistic |
|
phenomena such as numerical reasoning, structural changes, idioms, or temporal and spatial reasoning. |
|
|
|
The data is split across train, valid, test_lay, and test_expert. |
|
|
|
A small subset of test_expert is used as a diasnostic tool. For more info, please visit https://github.com/ir-nlp-csui/indonli |
|
|
|
The premise were collected from Indonesian Wikipedia and from other public Indonesian dataset: Indonesian PUD and GSD treebanks provided by the Universal Dependencies 2.5 and IndoSum |
|
|
|
The data was produced by humans. |
|
|
|
""" |
|
|
|
from pathlib import Path |
|
from typing import List |
|
|
|
import datasets |
|
import jsonlines |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Tasks |
|
|
|
_CITATION = """\ |
|
@inproceedings{mahendra-etal-2021-indonli, |
|
title = "{I}ndo{NLI}: A Natural Language Inference Dataset for {I}ndonesian", |
|
author = "Mahendra, Rahmad and Aji, Alham Fikri and Louvan, Samuel and Rahman, Fahrurrozi and Vania, Clara", |
|
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", |
|
month = nov, |
|
year = "2021", |
|
address = "Online and Punta Cana, Dominican Republic", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.emnlp-main.821", |
|
pages = "10511--10527", |
|
} |
|
""" |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
_DATASETNAME = "indonli" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is designed for Natural Language Inference NLP task. It is designed to provide a challenging test-bed |
|
for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural |
|
changes, idioms, or temporal and spatial reasoning. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/ir-nlp-csui/indonli" |
|
|
|
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International" |
|
|
|
|
|
|
|
|
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://raw.githubusercontent.com/ir-nlp-csui/indonli/main/data/indonli/train.jsonl", |
|
"valid": "https://raw.githubusercontent.com/ir-nlp-csui/indonli/main/data/indonli/val.jsonl", |
|
"test": "https://raw.githubusercontent.com/ir-nlp-csui/indonli/main/data/indonli/test.jsonl", |
|
} |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.TEXTUAL_ENTAILMENT] |
|
|
|
_SOURCE_VERSION = "1.1.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class IndoNli(datasets.GeneratorBasedBuilder): |
|
"""IndoNLI, a human-elicited NLI dataset for Indonesian containing ~18k sentence pairs annotated by crowd workers.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="indonli_source", |
|
version=SOURCE_VERSION, |
|
description="indonli source schema", |
|
schema="source", |
|
subset_id="indonli", |
|
), |
|
SEACrowdConfig( |
|
name="indonli_seacrowd_pairs", |
|
version=SEACROWD_VERSION, |
|
description="indonli Nusantara schema", |
|
schema="seacrowd_pairs", |
|
subset_id="indonli", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "indonli_source" |
|
labels = ["c", "e", "n"] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"pair_id": datasets.Value("int32"), |
|
"premise_id": datasets.Value("int32"), |
|
"premise": datasets.Value("string"), |
|
"hypothesis": datasets.Value("string"), |
|
"annotator_type": datasets.Value("string"), |
|
"sentence_size": datasets.Value("string"), |
|
"label": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_pairs": |
|
features = schemas.pairs_features(self.labels) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
train_data_path = Path(dl_manager.download_and_extract(urls["train"])) |
|
valid_data_path = Path(dl_manager.download_and_extract(urls["valid"])) |
|
test_data_path = Path(dl_manager.download_and_extract(urls["test"])) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": train_data_path}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": valid_data_path}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": test_data_path}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path): |
|
|
|
if self.config.schema == "source": |
|
print(filepath) |
|
with jsonlines.open(filepath) as f: |
|
skip = [] |
|
for example in f.iter(): |
|
if example["pair_id"] not in skip: |
|
skip.append(example["pair_id"]) |
|
example = { |
|
"pair_id": example["pair_id"], |
|
"premise_id": example["premise_id"], |
|
"premise": example["premise"], |
|
"hypothesis": example["hypothesis"], |
|
"annotator_type": example["annotator_type"], |
|
"sentence_size": example["sentence_size"], |
|
"label": example["label"], |
|
} |
|
yield example["pair_id"], example |
|
|
|
elif self.config.schema == "seacrowd_pairs": |
|
print(filepath) |
|
with jsonlines.open(filepath) as f: |
|
skip = [] |
|
for example in f.iter(): |
|
if example["pair_id"] not in skip: |
|
skip.append(example["pair_id"]) |
|
nu_eg = {"id": str(example["pair_id"]), "text_1": example["premise"], "text_2": example["hypothesis"], "label": example["label"]} |
|
yield example["pair_id"], nu_eg |
|
else: |
|
raise ValueError(f"Invalid config: {self.config.name}") |
|
|