holylovenia
commited on
Commit
·
d21b08a
1
Parent(s):
da0e2aa
Upload indspeech_newstra_ethnicsr.py with huggingface_hub
Browse files- indspeech_newstra_ethnicsr.py +219 -0
indspeech_newstra_ethnicsr.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from itertools import chain
|
18 |
+
from pathlib import Path
|
19 |
+
from random import sample
|
20 |
+
from typing import Dict, List, Tuple
|
21 |
+
|
22 |
+
import datasets
|
23 |
+
|
24 |
+
from nusacrowd.utils import schemas
|
25 |
+
from nusacrowd.utils.configs import NusantaraConfig
|
26 |
+
from nusacrowd.utils.constants import Tasks
|
27 |
+
|
28 |
+
_CITATION = """\
|
29 |
+
@inproceedings{sakti-cocosda-2013,
|
30 |
+
title = "Towards Language Preservation: Design and Collection of Graphemically Balanced and Parallel Speech Corpora of {I}ndonesian Ethnic Languages",
|
31 |
+
author = "Sakti, Sakriani and Nakamura, Satoshi",
|
32 |
+
booktitle = "Proc. Oriental COCOSDA",
|
33 |
+
year = "2013",
|
34 |
+
address = "Gurgaon, India"
|
35 |
+
}
|
36 |
+
|
37 |
+
@inproceedings{sakti-sltu-2014,
|
38 |
+
title = "Recent progress in developing grapheme-based speech recognition for {I}ndonesian ethnic languages: {J}avanese, {S}undanese, {B}alinese and {B}ataks",
|
39 |
+
author = "Sakti, Sakriani and Nakamura, Satoshi",
|
40 |
+
booktitle = "Proc. 4th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2014)",
|
41 |
+
year = "2014",
|
42 |
+
pages = "46--52",
|
43 |
+
address = "St. Petersburg, Russia"
|
44 |
+
}
|
45 |
+
|
46 |
+
@inproceedings{novitasari-sltu-2020,
|
47 |
+
title = "Cross-Lingual Machine Speech Chain for {J}avanese, {S}undanese, {B}alinese, and {B}ataks Speech Recognition and Synthesis",
|
48 |
+
author = "Novitasari, Sashi and Tjandra, Andros and Sakti, Sakriani and Nakamura, Satoshi",
|
49 |
+
booktitle = "Proc. Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)",
|
50 |
+
year = "2020",
|
51 |
+
pages = "131--138",
|
52 |
+
address = "Marseille, France"
|
53 |
+
}
|
54 |
+
"""
|
55 |
+
|
56 |
+
_DATASETNAME = "indspeech_newstra_ethnicsr"
|
57 |
+
_DESCRIPTION = """\
|
58 |
+
INDspeech_NEWSTRA_EthnicSR is a collection of graphemically balanced and parallel speech corpora of four major Indonesian ethnic languages: Javanese, Sundanese, Balinese, and Bataks. It was developed in 2013 by the Nara Institute of Science and Technology (NAIST, Japan) [Sakti et al., 2013]. The data has been used to develop Indonesian ethnic speech recognition in supervised learning [Sakti et al., 2014] and semi-supervised learning [Novitasari et al., 2020] based on Machine Speech Chain framework [Tjandra et al., 2020].
|
59 |
+
"""
|
60 |
+
|
61 |
+
_HOMEPAGE = "https://github.com/s-sakti/data_indsp_newstra_ethnicsr"
|
62 |
+
_LANGUAGES = ["sun", "jav", "btk", "ban"]
|
63 |
+
_LOCAL = False
|
64 |
+
_LICENSE = "CC-BY-NC-SA 4.0"
|
65 |
+
|
66 |
+
_lst_TYPE = ["traEth", "traInd"]
|
67 |
+
_lst_LANG = {"Bli": "BALI", "Btk": "BATAK", "Jaw": "JAWA", "Snd": "SUNDA"}
|
68 |
+
_lst_STD_LANG = {"ban": "Bli", "btk": "Btk", "jav": "Jaw", "sun": "Snd"}
|
69 |
+
_lst_HEAD_1_TRAIN = "https://raw.githubusercontent.com/s-sakti/data_indsp_newstra_ethnicsr/main/lst/dataset1_train_news_"
|
70 |
+
_lst_HEAD_1_TEST = ["https://raw.githubusercontent.com/s-sakti/data_indsp_newstra_ethnicsr/main/lst/dataset1_test_" + ltype + "_" for ltype in _lst_TYPE]
|
71 |
+
_lst_HEAD_2 = "https://raw.githubusercontent.com/s-sakti/data_indsp_newstra_ethnicsr/main/lst/dataset2_"
|
72 |
+
_sp_TEMPLATE = "https://raw.githubusercontent.com/s-sakti/data_indsp_newstra_ethnicsr/main/speech/16kHz/" # {lang}/Ind0{index}_{gender}_{lang_code}.zip"
|
73 |
+
_txt_TEMPLATE = "https://github.com/s-sakti/data_indsp_newstra_ethnicsr/raw/main/text/utts_transcript/" # {lang}/Ind0{index}_{gender}_{lang_code}.zip"
|
74 |
+
|
75 |
+
_URLS = {
|
76 |
+
"dataset1_train": {llang.lower(): [_lst_HEAD_1_TRAIN + llang + ".lst"] for llang in _lst_LANG},
|
77 |
+
"dataset1_test": {llang.lower(): [head1test + llang + ".lst" for head1test in _lst_HEAD_1_TEST] for llang in _lst_LANG},
|
78 |
+
"dataset2_train": {llang.lower(): [_lst_HEAD_2 + "train_news_" + llang + ".lst"] for llang in _lst_LANG},
|
79 |
+
"dataset2_test": {llang.lower(): [_lst_HEAD_2 + "test_news_" + llang + ".lst"] for llang in _lst_LANG},
|
80 |
+
"speech": {llang.lower(): [_sp_TEMPLATE + _lst_LANG[llang] + "/Ind" + str(idx).zfill(3) + "_" + ("M" if idx % 2 == 0 else "F") + "_" + llang + ".zip" for idx in range(1, 11)] for llang in _lst_LANG},
|
81 |
+
"transcript": {llang.lower(): [_txt_TEMPLATE + _lst_LANG[llang] + "/Ind" + str(idx).zfill(3) + "_" + ("M" if idx % 2 == 0 else "F") + "_" + llang + ".zip" for idx in range(1, 11)] for llang in _lst_LANG},
|
82 |
+
}
|
83 |
+
|
84 |
+
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]
|
85 |
+
|
86 |
+
_SOURCE_VERSION = "1.0.0"
|
87 |
+
_NUSANTARA_VERSION = "1.0.0"
|
88 |
+
|
89 |
+
|
90 |
+
def nusantara_config_constructor(lang, schema, version, overlap):
|
91 |
+
if lang == "":
|
92 |
+
raise ValueError(f"Invalid lang {lang}")
|
93 |
+
|
94 |
+
if schema != "source" and schema != "nusantara_sptext":
|
95 |
+
raise ValueError(f"Invalid schema: {schema}")
|
96 |
+
|
97 |
+
return NusantaraConfig(
|
98 |
+
name="indspeech_newstra_ethnicsr_{overlap}_{lang}_{schema}".format(lang=lang, schema=schema, overlap=overlap),
|
99 |
+
version=datasets.Version(version),
|
100 |
+
description="indspeech_newstra_ethnicsr {schema} schema for {lang} language with {overlap}ping dataset".format(lang=_lst_LANG[_lst_STD_LANG[lang]], schema=schema, overlap=overlap),
|
101 |
+
schema=schema,
|
102 |
+
subset_id="indspeech_newstra_ethnicsr_{overlap}".format(overlap=overlap),
|
103 |
+
)
|
104 |
+
|
105 |
+
class INDspeechNEWSTRAEthnicSR(datasets.GeneratorBasedBuilder):
|
106 |
+
"""
|
107 |
+
The dataset contains 2 sub-datasets
|
108 |
+
Dataset 1 has 2250/1000 train/test samples per language
|
109 |
+
Dataset 2 has another 1600/50 train/test per language
|
110 |
+
The 'overlap' keyword in the dataset-name combines both sub-datasets, while 'nooverlap' will only use dataset 1
|
111 |
+
"""
|
112 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
113 |
+
NUSANTARA_VERSION = datasets.Version(_NUSANTARA_VERSION)
|
114 |
+
|
115 |
+
BUILDER_CONFIGS = [nusantara_config_constructor(lang, "source", _SOURCE_VERSION, overlap) for lang in _lst_STD_LANG for overlap in ["overlap","nooverlap"]] +\
|
116 |
+
[nusantara_config_constructor(lang, "nusantara_sptext", _NUSANTARA_VERSION, overlap) for lang in _lst_STD_LANG for overlap in ["overlap","nooverlap"]]
|
117 |
+
|
118 |
+
DEFAULT_CONFIG_NAME = "indspeech_newstra_ethnicsr_jav_source"
|
119 |
+
|
120 |
+
def _info(self) -> datasets.DatasetInfo:
|
121 |
+
if self.config.schema == "source":
|
122 |
+
features = datasets.Features(
|
123 |
+
{
|
124 |
+
"id": datasets.Value("string"),
|
125 |
+
"speaker_id": datasets.Value("string"),
|
126 |
+
"path": datasets.Value("string"),
|
127 |
+
"audio": datasets.Audio(sampling_rate=16_000),
|
128 |
+
"text": datasets.Value("string"),
|
129 |
+
"gender": datasets.Value("string"),
|
130 |
+
}
|
131 |
+
)
|
132 |
+
elif self.config.schema == "nusantara_sptext":
|
133 |
+
features = schemas.speech_text_features
|
134 |
+
|
135 |
+
return datasets.DatasetInfo(
|
136 |
+
description=_DESCRIPTION,
|
137 |
+
features=features,
|
138 |
+
homepage=_HOMEPAGE,
|
139 |
+
license=_LICENSE,
|
140 |
+
citation=_CITATION,
|
141 |
+
)
|
142 |
+
|
143 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
144 |
+
lang = _lst_STD_LANG[self.config.name.split("_")[4]].lower()
|
145 |
+
ds1_train_urls = _URLS["dataset1_train"][lang]
|
146 |
+
ds1_test_urls = _URLS["dataset1_test"][lang]
|
147 |
+
ds2_train_urls = _URLS["dataset2_train"][lang]
|
148 |
+
ds2_test_urls = _URLS["dataset2_test"][lang]
|
149 |
+
sp_urls = _URLS["speech"][lang]
|
150 |
+
txt_urls = _URLS["transcript"][lang]
|
151 |
+
|
152 |
+
ds1_train_dir = [Path(dl_manager.download_and_extract(ds1_train_url)) for ds1_train_url in ds1_train_urls]
|
153 |
+
ds1_test_dir = [Path(dl_manager.download_and_extract(ds1_test_url)) for ds1_test_url in ds1_test_urls]
|
154 |
+
ds2_train_dir = [Path(dl_manager.download_and_extract(ds2_train_url)) for ds2_train_url in ds2_train_urls]
|
155 |
+
ds2_test_dir = [Path(dl_manager.download_and_extract(ds2_test_url)) for ds2_test_url in ds2_test_urls]
|
156 |
+
sp_dir = {str(Path(sp_url).name)[:-4]: os.path.join(Path(dl_manager.download_and_extract(sp_url)), str(Path(sp_url).name))[:-4] for sp_url in sp_urls}
|
157 |
+
txt_dir = {str(Path(txt_url).name)[:-4]: os.path.join(Path(dl_manager.download_and_extract(txt_url)), str(Path(txt_url).name))[:-4] for txt_url in txt_urls}
|
158 |
+
|
159 |
+
return [
|
160 |
+
datasets.SplitGenerator(
|
161 |
+
name=datasets.Split.TRAIN,
|
162 |
+
gen_kwargs={
|
163 |
+
"filepath": {
|
164 |
+
"dataset1": ds1_train_dir,
|
165 |
+
"dataset2": ds2_train_dir,
|
166 |
+
"speech": sp_dir,
|
167 |
+
"transcript": txt_dir,
|
168 |
+
},
|
169 |
+
"split": "train",
|
170 |
+
},
|
171 |
+
),
|
172 |
+
datasets.SplitGenerator(
|
173 |
+
name=datasets.Split.TEST,
|
174 |
+
gen_kwargs={
|
175 |
+
"filepath": {
|
176 |
+
"dataset1": ds1_test_dir,
|
177 |
+
"dataset2": ds2_test_dir,
|
178 |
+
"speech": sp_dir,
|
179 |
+
"transcript": txt_dir,
|
180 |
+
},
|
181 |
+
"split": "test",
|
182 |
+
},
|
183 |
+
),
|
184 |
+
]
|
185 |
+
|
186 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
187 |
+
sample_list=[]
|
188 |
+
if self.config.name.split("_")[3] == "nooverlap":
|
189 |
+
sample_list = [open(samples).read().splitlines() for samples in filepath["dataset1"]] # +filepath["dataset2"]]
|
190 |
+
sample_list = list(chain(*sample_list))
|
191 |
+
elif self.config.name.split("_")[3] == "overlap":
|
192 |
+
sample_list = [open(samples).read().splitlines() for samples in filepath["dataset1"]+filepath["dataset2"]]
|
193 |
+
sample_list = list(chain(*sample_list))
|
194 |
+
|
195 |
+
for id, row in enumerate(sample_list):
|
196 |
+
if self.config.schema == "source":
|
197 |
+
ex = {
|
198 |
+
"id": str(id),
|
199 |
+
"speaker_id": str(Path(row).parent).split("/")[1],
|
200 |
+
"path": os.path.join(filepath["speech"][str(Path(row).parent).split("/")[1]], str(Path(row).name) + ".wav"),
|
201 |
+
"audio": os.path.join(filepath["speech"][str(Path(row).parent).split("/")[1]], str(Path(row).name) + ".wav"),
|
202 |
+
"text": open(os.path.join(filepath["transcript"][str(Path(row).parent).split("/")[1]], str(Path(row).name) + ".txt"), "r").read().splitlines()[0],
|
203 |
+
"gender": str(Path(row).parent).split("/")[1].split("_")[1],
|
204 |
+
}
|
205 |
+
yield id, ex
|
206 |
+
|
207 |
+
elif self.config.schema == "nusantara_sptext":
|
208 |
+
ex = {
|
209 |
+
"id": str(id),
|
210 |
+
"speaker_id": str(Path(row).parent).split("/")[1],
|
211 |
+
"path": os.path.join(filepath["speech"][str(Path(row).parent).split("/")[1]], str(Path(row).name) + ".wav"),
|
212 |
+
"audio": os.path.join(filepath["speech"][str(Path(row).parent).split("/")[1]], str(Path(row).name) + ".wav"),
|
213 |
+
"text": open(os.path.join(filepath["transcript"][str(Path(row).parent).split("/")[1]], str(Path(row).name) + ".txt"), "r").read().splitlines()[0],
|
214 |
+
"metadata": {
|
215 |
+
"speaker_age": None,
|
216 |
+
"speaker_gender": str(Path(row).parent).split("/")[1].split("_")[1],
|
217 |
+
},
|
218 |
+
}
|
219 |
+
yield id, ex
|