Datasets:

Languages:
Indonesian
ArXiv:
File size: 5,938 Bytes
1a8b87f
 
 
d73911d
 
1a8b87f
 
 
 
d73911d
1a8b87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d73911d
1a8b87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d73911d
1a8b87f
 
d73911d
1a8b87f
 
 
 
 
 
d73911d
 
 
1a8b87f
d73911d
1a8b87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d73911d
1a8b87f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d73911d
1a8b87f
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import os
from pathlib import Path
from typing import Dict, List, Tuple
from seacrowd.utils.constants import Tasks
from seacrowd.utils import schemas

import datasets
import json

from seacrowd.utils.configs import SEACrowdConfig

_CITATION = """\
@article{kurniawan2019,
  title={KaWAT: A Word Analogy Task Dataset for Indonesian},
  url={http://arxiv.org/abs/1906.09912},
  journal={arXiv:1906.09912 [cs]},
  author={Kurniawan, Kemal},
  year={2019},
  month={Jun}
}
"""

_LANGUAGES = ["ind"]  # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LOCAL = False

_DATASETNAME = "kawat"

_DESCRIPTION = """\
We introduced KaWAT (Kata Word Analogy  Task), a new word analogy task dataset for Indonesian. 
We evaluated on it several existing pretrained Indonesian word embeddings and embeddings trained on Indonesian online news corpus. 
We also tested them on two downstream tasks and found that pretrained word embeddings helped either by reducing the training epochs
or yielding significant performance gains.
"""

_HOMEPAGE = "https://github.com/kata-ai/kawat"

_LICENSE = "Creative Commons Attribution-ShareAlike 4.0"

_URLS = {
    _DATASETNAME: "https://raw.githubusercontent.com/kata-ai/kawat/master/{}/{}",
}

_SUPPORTED_TASKS = [Tasks.WORD_ANALOGY]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"

_PATH_FILE = [
    {
        "folder": "semantic",
        "file": [
            "antonyms.txt",
            "country-capitals.txt",
            "country-currencies.txt",
            "gender-specific-words.txt",
            "measure-words.txt",
            "province-capitals.txt"
        ]
    },
    {
        "folder": "syntax",
        "file": [
            "nouns.txt",
            "plurals.txt",
            "reduplications.txt",
            "verbs.txt"
        ]
    }
]

class Kawat(datasets.GeneratorBasedBuilder):

    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="kawat_source",
            version=SOURCE_VERSION,
            description="Kawat source schema",
            schema="source",
            subset_id="kawat",
        ),
        SEACrowdConfig(
            name="kawat_seacrowd_t2t",
            version=SEACROWD_VERSION,
            description="Kawat Nusantara schema",
            schema="seacrowd_t2t",
            subset_id="kawat",
        ),
    ]

    DEFAULT_CONFIG_NAME = "kawat_source"

    def _info(self) -> datasets.DatasetInfo:

        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "text_1": datasets.Value("string"),
                    "text_1_name": datasets.Value("string"),
                    "text_2": datasets.Value("string"),
                    "text_2_name": datasets.Value("string"),
                }
            )

        elif self.config.schema == "seacrowd_t2t":
            features = schemas.text2text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        datas = []

        num = 0

        for each_path_file in _PATH_FILE:
            for each_file in each_path_file["file"]:
                data_dir = dl_manager.download_and_extract(_URLS[_DATASETNAME].format(each_path_file['folder'], each_file))

                parsed_lines = open(data_dir, "r").readlines()

                titles = parsed_lines[0].split("\t")

                num_columns = len(titles)

                titles[num_columns-1] = titles[num_columns-1][:-1]

                for i in range(1, len(parsed_lines)):
                    words = parsed_lines[i].split("\t")

                    words[num_columns-1] = words[num_columns-1][:-1]

                    for j in range(1, num_columns):
                        if words[j] != "-":
                            datas.append({
                                "id": str(num),
                                "text_1": words[0],
                                "text_1_name": titles[0],
                                "text_2": words[j],
                                "text_2_name": titles[j],
                            })
                        num+=1
        
        with open(data_dir, 'w') as f:
            f.write(json.dumps(datas))

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": data_dir,
                    "split": "train",
                },
            ),
        ]

    def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
        data = json.load(open(filepath, "r"))

        if self.config.schema == "source":
            key = 0
            for each_data in data:
                example = {
                    "id": each_data["id"],
                    "text_1": each_data["text_1"],
                    "text_1_name": each_data["text_1_name"],
                    "text_2": each_data["text_2"],
                    "text_2_name": each_data["text_2_name"],
                }
                yield key, example
                key+=1

        elif self.config.schema == "seacrowd_t2t":
            key = 0
            for each_data in data:
                example = {
                    "id": each_data["id"],
                    "text_1": each_data["text_1"],
                    "text_1_name": each_data["text_1_name"],
                    "text_2": each_data["text_2"],
                    "text_2_name": each_data["text_2_name"],
                }
                yield key, example
                key+=1