File size: 5,071 Bytes
fba7b0d
 
 
 
 
10935dd
 
 
 
fba7b0d
 
 
 
10935dd
fba7b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10935dd
fba7b0d
 
 
 
 
 
 
 
10935dd
fba7b0d
 
 
 
 
 
10935dd
 
 
fba7b0d
10935dd
fba7b0d
 
 
 
 
 
 
 
 
 
10935dd
fba7b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10935dd
fba7b0d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
from pathlib import Path
from typing import List

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_DATASETNAME = "keps"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = ["ind"]
_LOCAL = False
_CITATION = """\
@inproceedings{mahfuzh2019improving,
  title={Improving Joint Layer RNN based Keyphrase Extraction by Using Syntactical Features},
  author={Miftahul Mahfuzh, Sidik Soleman, and Ayu Purwarianti},
  booktitle={Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
  pages={1--6},
  year={2019},
  organization={IEEE}
}
"""

_DESCRIPTION = """\
The KEPS dataset (Mahfuzh, Soleman and Purwarianti, 2019) consists of text from Twitter
discussing banking products and services and is written in the Indonesian language. A phrase
containing important information is considered a keyphrase. Text may contain one or more
keyphrases since important phrases can be located at different positions.
- tokens: a list of string features.
- seq_label: a list of classification labels, with possible values including O, B, I.
The labels use Inside-Outside-Beginning (IOB) tagging.
"""

_HOMEPAGE = "https://github.com/IndoNLP/indonlu"

_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"

_URLs = {
    "train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/train_preprocess.txt",
    "validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/valid_preprocess.txt",
    "test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/test_preprocess.txt",
}

_SUPPORTED_TASKS = [Tasks.KEYWORD_EXTRACTION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class KepsDataset(datasets.GeneratorBasedBuilder):
    """KEPS is an keyphrase extraction dataset contains about (train=800,valid=200,test=247) sentences, with 3 classes."""

    label_classes = ["B", "I", "O"]

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="keps_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="KEPS source schema",
            schema="source",
            subset_id="keps",
        ),
        SEACrowdConfig(
            name="keps_seacrowd_seq_label",
            version=datasets.Version(_SEACROWD_VERSION),
            description="KEPS Nusantara schema",
            schema="seacrowd_seq_label",
            subset_id="keps",
        ),
    ]

    DEFAULT_CONFIG_NAME = "keps_source"

    def _info(self):
        print(datasets)
        if self.config.schema == "source":
            features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ke_tag": [datasets.Value("string")]})
        elif self.config.schema == "seacrowd_seq_label":
            features = schemas.seq_label_features(self.label_classes)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
        validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
        test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
        data_files = {
            "train": train_tsv_path,
            "validation": validation_tsv_path,
            "test": test_tsv_path,
        }

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": data_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": data_files["validation"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_files["test"]},
            ),
        ]

    def _generate_examples(self, filepath: Path):
        conll_dataset = load_conll_data(filepath)

        if self.config.schema == "source":
            for i, row in enumerate(conll_dataset):
                ex = {"index": str(i), "tokens": row["sentence"], "ke_tag": row["label"]}
                yield i, ex
        elif self.config.schema == "seacrowd_seq_label":
            for i, row in enumerate(conll_dataset):
                ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]}
                yield i, ex
        else:
            raise ValueError(f"Invalid config: {self.config.name}")