File size: 5,071 Bytes
fba7b0d 10935dd fba7b0d 10935dd fba7b0d 10935dd fba7b0d 10935dd fba7b0d 10935dd fba7b0d 10935dd fba7b0d 10935dd fba7b0d 10935dd fba7b0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
from pathlib import Path
from typing import List
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.common_parser import load_conll_data
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
DEFAULT_SOURCE_VIEW_NAME, Tasks)
_DATASETNAME = "keps"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME
_LANGUAGES = ["ind"]
_LOCAL = False
_CITATION = """\
@inproceedings{mahfuzh2019improving,
title={Improving Joint Layer RNN based Keyphrase Extraction by Using Syntactical Features},
author={Miftahul Mahfuzh, Sidik Soleman, and Ayu Purwarianti},
booktitle={Proceedings of the 2019 International Conference of Advanced Informatics: Concepts, Theory and Applications (ICAICTA)},
pages={1--6},
year={2019},
organization={IEEE}
}
"""
_DESCRIPTION = """\
The KEPS dataset (Mahfuzh, Soleman and Purwarianti, 2019) consists of text from Twitter
discussing banking products and services and is written in the Indonesian language. A phrase
containing important information is considered a keyphrase. Text may contain one or more
keyphrases since important phrases can be located at different positions.
- tokens: a list of string features.
- seq_label: a list of classification labels, with possible values including O, B, I.
The labels use Inside-Outside-Beginning (IOB) tagging.
"""
_HOMEPAGE = "https://github.com/IndoNLP/indonlu"
_LICENSE = "Creative Common Attribution Share-Alike 4.0 International"
_URLs = {
"train": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/train_preprocess.txt",
"validation": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/valid_preprocess.txt",
"test": "https://raw.githubusercontent.com/IndoNLP/indonlu/master/dataset/keps_keyword-extraction-prosa/test_preprocess.txt",
}
_SUPPORTED_TASKS = [Tasks.KEYWORD_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class KepsDataset(datasets.GeneratorBasedBuilder):
"""KEPS is an keyphrase extraction dataset contains about (train=800,valid=200,test=247) sentences, with 3 classes."""
label_classes = ["B", "I", "O"]
BUILDER_CONFIGS = [
SEACrowdConfig(
name="keps_source",
version=datasets.Version(_SOURCE_VERSION),
description="KEPS source schema",
schema="source",
subset_id="keps",
),
SEACrowdConfig(
name="keps_seacrowd_seq_label",
version=datasets.Version(_SEACROWD_VERSION),
description="KEPS Nusantara schema",
schema="seacrowd_seq_label",
subset_id="keps",
),
]
DEFAULT_CONFIG_NAME = "keps_source"
def _info(self):
print(datasets)
if self.config.schema == "source":
features = datasets.Features({"index": datasets.Value("string"), "tokens": [datasets.Value("string")], "ke_tag": [datasets.Value("string")]})
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label_features(self.label_classes)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_tsv_path = Path(dl_manager.download_and_extract(_URLs["train"]))
validation_tsv_path = Path(dl_manager.download_and_extract(_URLs["validation"]))
test_tsv_path = Path(dl_manager.download_and_extract(_URLs["test"]))
data_files = {
"train": train_tsv_path,
"validation": validation_tsv_path,
"test": test_tsv_path,
}
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": data_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": data_files["validation"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_files["test"]},
),
]
def _generate_examples(self, filepath: Path):
conll_dataset = load_conll_data(filepath)
if self.config.schema == "source":
for i, row in enumerate(conll_dataset):
ex = {"index": str(i), "tokens": row["sentence"], "ke_tag": row["label"]}
yield i, ex
elif self.config.schema == "seacrowd_seq_label":
for i, row in enumerate(conll_dataset):
ex = {"id": str(i), "tokens": row["sentence"], "labels": row["label"]}
yield i, ex
else:
raise ValueError(f"Invalid config: {self.config.name}") |