holylovenia commited on
Commit
5db6e39
·
verified ·
1 Parent(s): c3730cb

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +53 -22
README.md CHANGED
@@ -1,32 +1,65 @@
 
1
  ---
2
- tags:
3
- - keyword-extraction
4
- language:
5
  - ind
 
 
 
 
 
6
  ---
7
 
8
- # keps
9
-
10
  The KEPS dataset (Mahfuzh, Soleman and Purwarianti, 2019) consists of text from Twitter
11
-
12
  discussing banking products and services and is written in the Indonesian language. A phrase
13
-
14
  containing important information is considered a keyphrase. Text may contain one or more
15
-
16
  keyphrases since important phrases can be located at different positions.
17
-
18
  - tokens: a list of string features.
19
-
20
  - seq_label: a list of classification labels, with possible values including O, B, I.
21
-
22
  The labels use Inside-Outside-Beginning (IOB) tagging.
23
 
 
 
 
 
 
 
 
 
 
24
  ## Dataset Usage
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- Run `pip install nusacrowd` before loading the dataset through HuggingFace's `load_dataset`.
27
 
28
  ## Citation
29
 
 
30
  ```
31
  @inproceedings{mahfuzh2019improving,
32
  title={Improving Joint Layer RNN based Keyphrase Extraction by Using Syntactical Features},
@@ -36,16 +69,14 @@ Run `pip install nusacrowd` before loading the dataset through HuggingFace's `lo
36
  year={2019},
37
  organization={IEEE}
38
  }
39
- ```
40
-
41
- ## License
42
-
43
- Creative Common Attribution Share-Alike 4.0 International
44
-
45
- ## Homepage
46
 
47
- [https://github.com/IndoNLP/indonlu](https://github.com/IndoNLP/indonlu)
48
 
49
- ### NusaCatalogue
 
 
 
 
 
 
50
 
51
- For easy indexing and metadata: [https://indonlp.github.io/nusa-catalogue](https://indonlp.github.io/nusa-catalogue)
 
1
+
2
  ---
3
+ language:
 
 
4
  - ind
5
+ pretty_name: Keps
6
+ task_categories:
7
+ - keyword-extraction
8
+ tags:
9
+ - keyword-extraction
10
  ---
11
 
 
 
12
  The KEPS dataset (Mahfuzh, Soleman and Purwarianti, 2019) consists of text from Twitter
 
13
  discussing banking products and services and is written in the Indonesian language. A phrase
 
14
  containing important information is considered a keyphrase. Text may contain one or more
 
15
  keyphrases since important phrases can be located at different positions.
 
16
  - tokens: a list of string features.
 
17
  - seq_label: a list of classification labels, with possible values including O, B, I.
 
18
  The labels use Inside-Outside-Beginning (IOB) tagging.
19
 
20
+
21
+ ## Languages
22
+
23
+ ind
24
+
25
+ ## Supported Tasks
26
+
27
+ Keyword Extraction
28
+
29
  ## Dataset Usage
30
+ ### Using `datasets` library
31
+ ```
32
+ from datasets import load_dataset
33
+ dset = datasets.load_dataset("SEACrowd/keps", trust_remote_code=True)
34
+ ```
35
+ ### Using `seacrowd` library
36
+ ```import seacrowd as sc
37
+ # Load the dataset using the default config
38
+ dset = sc.load_dataset("keps", schema="seacrowd")
39
+ # Check all available subsets (config names) of the dataset
40
+ print(sc.available_config_names("keps"))
41
+ # Load the dataset using a specific config
42
+ dset = sc.load_dataset_by_config_name(config_name="<config_name>")
43
+ ```
44
+
45
+ More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
46
+
47
+
48
+ ## Dataset Homepage
49
+
50
+ [https://github.com/IndoNLP/indonlu](https://github.com/IndoNLP/indonlu)
51
+
52
+ ## Dataset Version
53
+
54
+ Source: 1.0.0. SEACrowd: 2024.06.20.
55
+
56
+ ## Dataset License
57
 
58
+ Creative Common Attribution Share-Alike 4.0 International
59
 
60
  ## Citation
61
 
62
+ If you are using the **Keps** dataloader in your work, please cite the following:
63
  ```
64
  @inproceedings{mahfuzh2019improving,
65
  title={Improving Joint Layer RNN based Keyphrase Extraction by Using Syntactical Features},
 
69
  year={2019},
70
  organization={IEEE}
71
  }
 
 
 
 
 
 
 
72
 
 
73
 
74
+ @article{lovenia2024seacrowd,
75
+ title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages},
76
+ author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
77
+ year={2024},
78
+ eprint={2406.10118},
79
+ journal={arXiv preprint arXiv: 2406.10118}
80
+ }
81
 
82
+ ```