File size: 8,761 Bytes
61098d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The khPOS Corpus (Khmer POS Corpus) is a 12,000 sentences (25,626 words) manually word segmented and POS tagged corpus
developed for Khmer language NLP research and developments. We collected Khmer sentences from websites that include
various area such as economics, news, politics. Moreover it is also contained some student list and voter list of
national election committee of Cambodia. The average number of words per sentence in the whole corpus is 10.75.
Here, some symbols such as "។" (Khmer sign Khan), "៖" (Khmer sign Camnuc pii kuuh), "-", "?", "[", "]" etc. also
counted as words. The shortest sentence contained only 1 word and longest sentence contained 169 words. This dataset contains
A validation set and a test set, each containing 1000 sentences.
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Tasks, Licenses
_CITATION = """\
@inproceedings{kyaw2017comparison,
title={Comparison of Six POS Tagging Methods on 12K Sentences Khmer Language POS Tagged Corpus},
author={Ye Kyaw Thu and Vichet Chea and Yoshinori Sagisaka},
booktitle={Proceedings of the first Regional Conference on Optical character recognition and Natural language processing technologies for ASEAN languages (ONA 2017)},
year={2017},
month={December 7-8},
address={Phnom Penh, Cambodia}
}
"""
_DATASETNAME = "khpos"
_DESCRIPTION = """\
The khPOS Corpus (Khmer POS Corpus) is a 12,000 sentences (25,626 words) manually word segmented and POS tagged corpus
developed for Khmer language NLP research and developments. We collected Khmer sentences from websites that include
various area such as economics, news, politics. Moreover it is also contained some student list and voter list of
national election committee of Cambodia. The average number of words per sentence in the whole corpus is 10.75.
Here, some symbols such as "។" (Khmer sign Khan), "៖" (Khmer sign Camnuc pii kuuh), "-", "?", "[", "]" etc. also
counted as words. The shortest sentence contained only 1 word and longest sentence contained 169 words. This dataset contains
A validation set and a test set, each containing 1000 sentences.
"""
_HOMEPAGE = "https://github.com/ye-kyaw-thu/khPOS/tree/master"
_LANGUAGES = ['khm'] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: {
'train': "https://raw.githubusercontent.com/ye-kyaw-thu/khPOS/master/corpus-draft-ver-1.0/data/after-replace/train.all2",
'validation': "https://raw.githubusercontent.com/ye-kyaw-thu/khPOS/master/corpus-draft-ver-1.0/data/OPEN-TEST",
'test': "https://raw.githubusercontent.com/ye-kyaw-thu/khPOS/master/corpus-draft-ver-1.0/data/CLOSE-TEST"
}
}
_SUPPORTED_TASKS = [Tasks.POS_TAGGING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class KhPOS(datasets.GeneratorBasedBuilder):
"""\
This datasets contain 12000 sentences (25626 words) for the Khmer language.
There are 24 POS tags and their description can be found at https://github.com/ye-kyaw-thu/khPOS/tree/master.
The used Khmer Tokenizer can be found in the above github repository as well. This dataset contains
A validation set and a test set, each containing 1000 sentences.
"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="khpos_source",
version=SOURCE_VERSION,
description="khpos source schema",
schema="source",
subset_id="khpos",
),
SEACrowdConfig(
name="khpos_seacrowd_seq_label",
version=SEACROWD_VERSION,
description="khpos SEACrowd schema",
schema="seacrowd_seq_label",
subset_id="khpos",
),
]
DEFAULT_CONFIG_NAME = "khpos_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features({
"id" : datasets.Value("string"),
"tokens" : datasets.Sequence(datasets.Value("string")),
#pos_tags follows order from corpus-draft-ver-1.0/data/after-replace/train.all2.tag.freq
"pos_tags": datasets.Sequence(datasets.features.ClassLabel(
names = [
'AB', 'AUX', 'CC', 'CD',
'DBL', 'DT', 'ETC', 'IN',
'JJ', 'KAN', 'M', 'NN',
'PA', 'PN', 'PRO', 'QT',
'RB', 'RPN', 'SYM', 'UH',
'VB', 'VB_JJ', 'VCOM'
]
))
})
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label.features([
'AB', 'AUX', 'CC', 'CD',
'DBL', 'DT', 'ETC', 'IN',
'JJ', 'KAN', 'M', 'NN',
'PA', 'PN', 'PRO', 'QT',
'RB', 'RPN', 'SYM', 'UH',
'VB', 'VB_JJ', 'VCOM'
])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
urls = _URLS[_DATASETNAME]['train']
path = dl_manager.download_and_extract(urls)
dev_url = _URLS[_DATASETNAME]['validation']
dev_path = dl_manager.download_and_extract(dev_url)
test_url = _URLS[_DATASETNAME]['test']
test_path = dl_manager.download_and_extract(test_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": path,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dev_path,
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_path,
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
"""Yields examples as (key, example) tuples."""
with open(filepath, encoding="utf-8") as file:
counter = 0
for line in file:
if line.strip() != "":
groups = line.split(" ")
tokens = []
pos_tags = []
for group in groups:
token, pos_tag = group.split("/")
tokens.append(token)
pos_tags.append(pos_tag)
if self.config.schema == "source":
yield (
counter,
{
"id" : str(counter),
"tokens" : tokens,
"pos_tags": pos_tags
}
)
counter += 1
elif self.config.schema == "seacrowd_seq_label":
yield (
counter,
{
"id" : str(counter),
"tokens": tokens,
"labels": pos_tags
}
)
counter += 1
|