File size: 3,468 Bytes
546ab14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda7141
546ab14
 
 
eda7141
 
546ab14
 
 
 
eda7141
546ab14
eda7141
546ab14
eda7141
546ab14
eda7141
 
 
546ab14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

---
license: unknown
language: 
- fil
- tgl
pretty_name: Lazada Review Filipino
task_categories: 
- sentiment-analysis
tags: 
- sentiment-analysis
---

Filipino-Tagalog Product Reviews Sentiment Analysis
This is a machine learning dataset that can be used to analyze the sentiment of product reviews in Filipino-Tagalog.
The dataset contains over 900+ weakly annotated Filipino reviews scraped from the Lazada Philippines platform. 
Each review is associated with a five star point rating where one is the lowest and five is the highest.


## Languages

fil, tgl

## Supported Tasks

Sentiment Analysis

## Dataset Usage
### Using `datasets` library
```
from datasets import load_dataset
dset = datasets.load_dataset("SEACrowd/lazada_review_filipino", trust_remote_code=True)
```
### Using `seacrowd` library
```import seacrowd as sc
# Load the dataset using the default config
dset = sc.load_dataset("lazada_review_filipino", schema="seacrowd")
# Check all available subsets (config names) of the dataset
print(sc.available_config_names("lazada_review_filipino"))
# Load the dataset using a specific config
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
```

More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).


## Dataset Homepage

[https://github.com/EricEchemane/Filipino-Tagalog-Product-Reviews-Sentiment-Analysis](https://github.com/EricEchemane/Filipino-Tagalog-Product-Reviews-Sentiment-Analysis)

## Dataset Version

Source: 1.0.0. SEACrowd: 2024.06.20.

## Dataset License

Unknown (unknown)

## Citation

If you are using the **Lazada Review Filipino** dataloader in your work, please cite the following:
```
@misc{github,
  author={Eric Echemane},
  title={Filipino-Tagalog-Product-Reviews-Sentiment-Analysis},
  year={2022},
  url={https://github.com/EricEchemane/Filipino-Tagalog-Product-Reviews-Sentiment-Analysis/tree/main},
}


@article{lovenia2024seacrowd,
    title={SEACrowd: A Multilingual Multimodal Data Hub and Benchmark Suite for Southeast Asian Languages}, 
    author={Holy Lovenia and Rahmad Mahendra and Salsabil Maulana Akbar and Lester James V. Miranda and Jennifer Santoso and Elyanah Aco and Akhdan Fadhilah and Jonibek Mansurov and Joseph Marvin Imperial and Onno P. Kampman and Joel Ruben Antony Moniz and Muhammad Ravi Shulthan Habibi and Frederikus Hudi and Railey Montalan and Ryan Ignatius and Joanito Agili Lopo and William Nixon and Börje F. Karlsson and James Jaya and Ryandito Diandaru and Yuze Gao and Patrick Amadeus and Bin Wang and Jan Christian Blaise Cruz and Chenxi Whitehouse and Ivan Halim Parmonangan and Maria Khelli and Wenyu Zhang and Lucky Susanto and Reynard Adha Ryanda and Sonny Lazuardi Hermawan and Dan John Velasco and Muhammad Dehan Al Kautsar and Willy Fitra Hendria and Yasmin Moslem and Noah Flynn and Muhammad Farid Adilazuarda and Haochen Li and Johanes Lee and R. Damanhuri and Shuo Sun and Muhammad Reza Qorib and Amirbek Djanibekov and Wei Qi Leong and Quyet V. Do and Niklas Muennighoff and Tanrada Pansuwan and Ilham Firdausi Putra and Yan Xu and Ngee Chia Tai and Ayu Purwarianti and Sebastian Ruder and William Tjhi and Peerat Limkonchotiwat and Alham Fikri Aji and Sedrick Keh and Genta Indra Winata and Ruochen Zhang and Fajri Koto and Zheng-Xin Yong and Samuel Cahyawijaya},
    year={2024},
    eprint={2406.10118},
    journal={arXiv preprint arXiv: 2406.10118}
}

```