holylovenia
commited on
Upload lexitron.py with huggingface_hub
Browse files- lexitron.py +295 -0
lexitron.py
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""
|
17 |
+
Corpus-based dictionary of Thai and English languages. \
|
18 |
+
This dataset contains frequently-used words from trusted \
|
19 |
+
publications such as novels, academic documents and newspaper. \
|
20 |
+
The dataset link contains Thai-English and English-Thai lexicons. \
|
21 |
+
Thai-English vocabulary consists of vocabulary, type of word \
|
22 |
+
(part of speech), translation, synonym (synonym) and sample sentences \
|
23 |
+
with a list of Thai-> English words, 53,000 words and English vocabulary \
|
24 |
+
list -> Thai, 83,000 words.
|
25 |
+
"""
|
26 |
+
import os
|
27 |
+
import re
|
28 |
+
from pathlib import Path
|
29 |
+
from typing import Dict, List, Tuple
|
30 |
+
|
31 |
+
import datasets
|
32 |
+
import pandas as pd
|
33 |
+
|
34 |
+
from seacrowd.utils import schemas
|
35 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
36 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
37 |
+
|
38 |
+
# There are no citations available for this dataset.
|
39 |
+
_CITATION = ""
|
40 |
+
|
41 |
+
_DATASETNAME = "lexitron"
|
42 |
+
|
43 |
+
_DESCRIPTION = """
|
44 |
+
Corpus-based dictionary of Thai and English languages. \
|
45 |
+
This dataset contains frequently-used words from trusted \
|
46 |
+
publications such as novels, academic documents and newspaper. \
|
47 |
+
The dataset link contains Thai-English and English-Thai lexicons. \
|
48 |
+
Thai-English vocabulary consists of vocabulary, type of word \
|
49 |
+
(part of speech), translation, synonym (synonym) and sample sentences \
|
50 |
+
with a list of Thai-> English words, 53,000 words and English vocabulary \
|
51 |
+
list -> Thai, 83,000 words.
|
52 |
+
"""
|
53 |
+
|
54 |
+
_HOMEPAGE = "https://opend-portal.nectec.or.th/dataset/lexitron-2-0"
|
55 |
+
|
56 |
+
_LANGUAGES = ["tha"]
|
57 |
+
|
58 |
+
_LICENSE = Licenses.OTHERS.value
|
59 |
+
|
60 |
+
_LOCAL = False
|
61 |
+
|
62 |
+
_URLS = {
|
63 |
+
"telex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
|
64 |
+
"etlex": "https://opend-portal.nectec.or.th/dataset/bdd85296-9398-499f-b3a7-aab85042d3f9/resource/761924ea-937f-4be3-afe1-c031c754fa39/download/lexitron_2.0.zip",
|
65 |
+
}
|
66 |
+
|
67 |
+
_SUPPORTED_TASKS = [Tasks.MACHINE_TRANSLATION]
|
68 |
+
|
69 |
+
_SOURCE_VERSION = "1.0.0"
|
70 |
+
|
71 |
+
_SEACROWD_VERSION = "2024.06.20"
|
72 |
+
|
73 |
+
|
74 |
+
class LEXiTRONDataset(datasets.GeneratorBasedBuilder):
|
75 |
+
"""
|
76 |
+
Corpus-based dictionary of Thai and English languages. \
|
77 |
+
This dataset contains frequently-used words from trusted \
|
78 |
+
publications such as novels, academic documents and newspaper. \
|
79 |
+
The dataset link contains Thai-English and English-Thai lexicons. \
|
80 |
+
Thai-English vocabulary consists of vocabulary, type of word \
|
81 |
+
(part of speech), translation, synonym (synonym) and sample sentences \
|
82 |
+
with a list of Thai-> English words, 53,000 words and English vocabulary \
|
83 |
+
list -> Thai, 83,000 words.
|
84 |
+
"""
|
85 |
+
|
86 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
87 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
88 |
+
SEACROWD_SCHEMA_NAME = "t2t"
|
89 |
+
|
90 |
+
BUILDER_CONFIGS = [
|
91 |
+
SEACrowdConfig(
|
92 |
+
name=f"{_DATASETNAME}_telex_source",
|
93 |
+
version=SOURCE_VERSION,
|
94 |
+
description=f"{_DATASETNAME} source schema",
|
95 |
+
schema="source",
|
96 |
+
subset_id=f"{_DATASETNAME}_telex",
|
97 |
+
),
|
98 |
+
SEACrowdConfig(
|
99 |
+
name=f"{_DATASETNAME}_telex_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
100 |
+
version=SEACROWD_VERSION,
|
101 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
102 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
103 |
+
subset_id=f"{_DATASETNAME}_telex",
|
104 |
+
),
|
105 |
+
SEACrowdConfig(
|
106 |
+
name=f"{_DATASETNAME}_etlex_source",
|
107 |
+
version=SOURCE_VERSION,
|
108 |
+
description=f"{_DATASETNAME} source schema",
|
109 |
+
schema="source",
|
110 |
+
subset_id=f"{_DATASETNAME}_etlex",
|
111 |
+
),
|
112 |
+
SEACrowdConfig(
|
113 |
+
name=f"{_DATASETNAME}_etlex_seacrowd_{SEACROWD_SCHEMA_NAME}",
|
114 |
+
version=SEACROWD_VERSION,
|
115 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
116 |
+
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}",
|
117 |
+
subset_id=f"{_DATASETNAME}_etlex",
|
118 |
+
),
|
119 |
+
]
|
120 |
+
|
121 |
+
DEFAULT_CONFIG_NAME = "[dataset_name]_source"
|
122 |
+
|
123 |
+
def _info(self) -> datasets.DatasetInfo:
|
124 |
+
|
125 |
+
if self.config.schema == "source":
|
126 |
+
|
127 |
+
translation_type = self.config.name.split("_")[1]
|
128 |
+
|
129 |
+
if translation_type == "telex":
|
130 |
+
features = datasets.Features(
|
131 |
+
{
|
132 |
+
"id": datasets.Value("int64"),
|
133 |
+
"tsearch": datasets.Value("string"),
|
134 |
+
"tentry": datasets.Value("string"),
|
135 |
+
"eentry": datasets.Value("string"),
|
136 |
+
"tcat": datasets.Value("string"),
|
137 |
+
"tsyn": datasets.Value("string"),
|
138 |
+
"tsample": datasets.Value("string"),
|
139 |
+
"tdef": datasets.Value("string"),
|
140 |
+
}
|
141 |
+
)
|
142 |
+
|
143 |
+
elif translation_type == "etlex":
|
144 |
+
features = datasets.Features(
|
145 |
+
{"id": datasets.Value("int64"), "esearch": datasets.Value("string"), "eentry": datasets.Value("string"), "tentry": datasets.Value("string"), "ecat": datasets.Value("string"), "esyn": datasets.Value("string")}
|
146 |
+
)
|
147 |
+
|
148 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
149 |
+
features = schemas.text2text_features
|
150 |
+
|
151 |
+
return datasets.DatasetInfo(
|
152 |
+
description=_DESCRIPTION,
|
153 |
+
features=features,
|
154 |
+
homepage=_HOMEPAGE,
|
155 |
+
license=_LICENSE,
|
156 |
+
citation=_CITATION,
|
157 |
+
)
|
158 |
+
|
159 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
160 |
+
"""Returns SplitGenerators."""
|
161 |
+
|
162 |
+
translation_type = self.config.name.split("_")[1]
|
163 |
+
data_dir = dl_manager.download_and_extract(_URLS[translation_type])
|
164 |
+
|
165 |
+
return [
|
166 |
+
datasets.SplitGenerator(
|
167 |
+
name=datasets.Split.TRAIN,
|
168 |
+
gen_kwargs={
|
169 |
+
"filepath": os.path.join(data_dir, f"LEXiTRON_2.0/{translation_type}"),
|
170 |
+
"split": "train",
|
171 |
+
},
|
172 |
+
)
|
173 |
+
]
|
174 |
+
|
175 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
176 |
+
"""Yields examples as (key, example) tuples."""
|
177 |
+
|
178 |
+
translation_type = self.config.name.split("_")[1]
|
179 |
+
|
180 |
+
if translation_type == "telex":
|
181 |
+
|
182 |
+
with open(filepath, "r", encoding="latin-1") as file:
|
183 |
+
data = file.read()
|
184 |
+
|
185 |
+
pattern = r"<Doc>(.*?)</Doc>"
|
186 |
+
docs = re.findall(pattern, data, re.DOTALL)
|
187 |
+
|
188 |
+
doc_data = []
|
189 |
+
|
190 |
+
for doc in docs:
|
191 |
+
tsearch = tentry = eentry = tcat = tsyn = tsample = tdef = id = None
|
192 |
+
|
193 |
+
tsearch_match = re.search(r"<tsearch>(.*?)</tsearch>", doc)
|
194 |
+
if tsearch_match:
|
195 |
+
tsearch = tsearch_match.group(1)
|
196 |
+
|
197 |
+
tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
|
198 |
+
if tentry_match:
|
199 |
+
tentry = tentry_match.group(1)
|
200 |
+
|
201 |
+
eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
|
202 |
+
if eentry_match:
|
203 |
+
eentry = eentry_match.group(1)
|
204 |
+
|
205 |
+
tcat_match = re.search(r"<tcat>(.*?)</tcat>", doc)
|
206 |
+
if tcat_match:
|
207 |
+
tcat = tcat_match.group(1)
|
208 |
+
|
209 |
+
tsyn_match = re.search(r"<tsyn>(.*?)</tsyn>", doc)
|
210 |
+
if tsyn_match:
|
211 |
+
tsyn = tsyn_match.group(1)
|
212 |
+
|
213 |
+
tsample_match = re.search(r"<tsample>(.*?)</tsample>", doc)
|
214 |
+
if tsample_match:
|
215 |
+
tsample = tsample_match.group(1)
|
216 |
+
|
217 |
+
tdef_match = re.search(r"<tdef>(.*?)</tdef>", doc)
|
218 |
+
if tdef_match:
|
219 |
+
tdef = tdef_match.group(1)
|
220 |
+
|
221 |
+
id_match = re.search(r"<id>(.*?)</id>", doc)
|
222 |
+
if id_match:
|
223 |
+
id = id_match.group(1)
|
224 |
+
|
225 |
+
doc_data.append({"id": id, "tsearch": tsearch, "tentry": tentry, "eentry": eentry, "tcat": tcat, "tsyn": tsyn, "tsample": tsample, "tdef": tdef})
|
226 |
+
|
227 |
+
df = pd.DataFrame(doc_data)
|
228 |
+
|
229 |
+
if translation_type == "etlex":
|
230 |
+
|
231 |
+
with open(filepath, "r", encoding="latin-1") as file:
|
232 |
+
data = file.read()
|
233 |
+
|
234 |
+
pattern = r"<Doc>(.*?)</Doc>"
|
235 |
+
docs = re.findall(pattern, data, re.DOTALL)
|
236 |
+
|
237 |
+
doc_data = []
|
238 |
+
|
239 |
+
for doc in docs:
|
240 |
+
esearch = eentry = tentry = ecat = esyn = id = None
|
241 |
+
|
242 |
+
esearch_match = re.search(r"<esearch>(.*?)</esearch>", doc)
|
243 |
+
if esearch_match:
|
244 |
+
esearch = esearch_match.group(1)
|
245 |
+
|
246 |
+
eentry_match = re.search(r"<eentry>(.*?)</eentry>", doc)
|
247 |
+
if eentry_match:
|
248 |
+
eentry = eentry_match.group(1)
|
249 |
+
|
250 |
+
tentry_match = re.search(r"<tentry>(.*?)</tentry>", doc)
|
251 |
+
if tentry_match:
|
252 |
+
tentry = tentry_match.group(1)
|
253 |
+
|
254 |
+
ecat_match = re.search(r"<ecat>(.*?)</ecat>", doc)
|
255 |
+
if ecat_match:
|
256 |
+
ecat = ecat_match.group(1)
|
257 |
+
|
258 |
+
esyn_match = re.search(r"<esyn>(.*?)</esyn>", doc)
|
259 |
+
if esyn_match:
|
260 |
+
esyn = esyn_match.group(1)
|
261 |
+
|
262 |
+
id_match = re.search(r"<id>(.*?)</id>", doc)
|
263 |
+
if id_match:
|
264 |
+
id = id_match.group(1)
|
265 |
+
|
266 |
+
doc_data.append({"id": id, "esearch": esearch, "eentry": eentry, "tentry": tentry, "ecat": ecat, "esyn": esyn})
|
267 |
+
|
268 |
+
df = pd.DataFrame(doc_data)
|
269 |
+
|
270 |
+
for index, row in df.iterrows():
|
271 |
+
|
272 |
+
if self.config.schema == "source":
|
273 |
+
example = row.to_dict()
|
274 |
+
|
275 |
+
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}":
|
276 |
+
|
277 |
+
if translation_type == "telex":
|
278 |
+
example = {
|
279 |
+
"id": str(index),
|
280 |
+
"text_1": str(row["tentry"]),
|
281 |
+
"text_2": str(row["eentry"]),
|
282 |
+
"text_1_name": "tentry",
|
283 |
+
"text_2_name": "eentry",
|
284 |
+
}
|
285 |
+
|
286 |
+
if translation_type == "etlex":
|
287 |
+
example = {
|
288 |
+
"id": str(index),
|
289 |
+
"text_1": str(row["eentry"]),
|
290 |
+
"text_2": str(row["tentry"]),
|
291 |
+
"text_1_name": "eentry",
|
292 |
+
"text_2_name": "tentry",
|
293 |
+
}
|
294 |
+
|
295 |
+
yield index, example
|