Datasets:

Languages:
Thai
ArXiv:
License:
File size: 6,780 Bytes
90d1157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import json
from pathlib import Path
from typing import Dict, List, Tuple

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks

_CITATION = """\
@INPROCEEDINGS{9678187,
  author={Payoungkhamdee, Patomporn and Porkaew, Peerachet and Sinthunyathum, Atthasith and Songphum, Phattharaphon and Kawidam, Witsarut and Loha-Udom, Wichayut and Boonkwan, Prachya and Sutantayawalee, Vipas},
  booktitle={2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)},
  title={LimeSoda: Dataset for Fake News Detection in Healthcare Domain},
  year={2021},
  volume={},
  number={},
  pages={1-6},
  doi={10.1109/iSAI-NLP54397.2021.9678187}}
"""

_DATASETNAME = "limesoda"

_DESCRIPTION = """\
Thai fake news dataset in the healthcare domain consisting of curate and manually annotated 7,191 documents
(only 4,141 documents contain token labels and are used as a test set of the baseline models).
Each document in the dataset is classified as fact, fake, or undefined.
"""

_HOMEPAGE = "https://github.com/byinth/LimeSoda"

_LICENSE = Licenses.CC_BY_4_0.value

_LANGUAGES = ["tha"]
_LOCAL = False

_URLS = {
    "split": {
        "train": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/train_v1.jsonl",
        "val": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/val_v1.jsonl",
        "test": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/test_v1.jsonl",
    },
    "raw": "https://raw.githubusercontent.com/byinth/LimeSoda/main/LimeSoda/Limesoda.jsonl",
}

_SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION]

_SOURCE_VERSION = "1.0.0"

_SEACROWD_VERSION = "2024.06.20"


class LimeSodaDataset(datasets.GeneratorBasedBuilder):
    SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
    SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=SOURCE_VERSION,
            description="limesoda source schema",
            schema="source",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_split_source",
            version=SOURCE_VERSION,
            description="limesoda source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}_split",
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_seacrowd_text",
            version=SEACROWD_VERSION,
            description="limesoda SEACrowd schema",
            schema="seacrowd_text",
            subset_id=_DATASETNAME,
        ),
        SEACrowdConfig(
            name=f"{_DATASETNAME}_split_seacrowd_text",
            version=SEACROWD_VERSION,
            description="limesoda: split SEACrowd schema",
            schema="seacrowd_text",
            subset_id=f"{_DATASETNAME}_split",
        ),
    ]

    DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"

    def _info(self) -> datasets.DatasetInfo:
        if self.config.schema == "source":
            if self.config.subset_id == "limesoda":
                features = datasets.Features(
                    {
                        "id": datasets.Value("string"),
                        "title": datasets.Value("string"),
                        "detail": datasets.Sequence(datasets.Value("string")),
                        "title_token_tags": datasets.Value("string"),
                        "detail_token_tags": datasets.Sequence(datasets.Value("string")),
                        "document_tag": datasets.Value("string"),
                    }
                )
            else:
                features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "document_tag": datasets.Value("string")})
        elif self.config.schema == "seacrowd_text":
            features = schemas.text_features(["Fact News", "Fake News", "Undefined"])

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        """Returns SplitGenerators."""
        path_dict = dl_manager.download_and_extract(_URLS)
        if self.config.subset_id == "limesoda":
            raw_path = path_dict["raw"]
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": raw_path,
                    },
                ),
            ]
        elif self.config.subset_id == "limesoda_split":
            train_path, val_path, test_path = path_dict["split"]["train"], path_dict["split"]["val"], path_dict["split"]["test"]
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "filepath": train_path,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "filepath": test_path,
                    },
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "filepath": val_path,
                    },
                ),
            ]

    def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
        with open(filepath, "r") as f:
            entries = [json.loads(line) for line in f.readlines()]
        if self.config.schema == "source":
            if self.config.subset_id == "limesoda":
                for i, row in enumerate(entries):
                    ex = {"id": str(i), "title": row["Title"], "detail": row["Detail"], "title_token_tags": row["Title Token Tags"], "detail_token_tags": row["Detail Token Tags"], "document_tag": row["Document Tag"]}
                    yield i, ex
            else:
                for i, row in enumerate(entries):
                    ex = {"id": str(i), "text": row["Text"], "document_tag": row["Document Tag"]}
                    yield i, ex
        elif self.config.schema == "seacrowd_text":
            for i, row in enumerate(entries):
                ex = {
                    "id": str(i),
                    "text": row["Detail"] if self.config.subset_id == "limesoda" else row["Text"],
                    "label": row["Document Tag"],
                }
                yield i, ex