File size: 6,780 Bytes
90d1157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import json
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@INPROCEEDINGS{9678187,
author={Payoungkhamdee, Patomporn and Porkaew, Peerachet and Sinthunyathum, Atthasith and Songphum, Phattharaphon and Kawidam, Witsarut and Loha-Udom, Wichayut and Boonkwan, Prachya and Sutantayawalee, Vipas},
booktitle={2021 16th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP)},
title={LimeSoda: Dataset for Fake News Detection in Healthcare Domain},
year={2021},
volume={},
number={},
pages={1-6},
doi={10.1109/iSAI-NLP54397.2021.9678187}}
"""
_DATASETNAME = "limesoda"
_DESCRIPTION = """\
Thai fake news dataset in the healthcare domain consisting of curate and manually annotated 7,191 documents
(only 4,141 documents contain token labels and are used as a test set of the baseline models).
Each document in the dataset is classified as fact, fake, or undefined.
"""
_HOMEPAGE = "https://github.com/byinth/LimeSoda"
_LICENSE = Licenses.CC_BY_4_0.value
_LANGUAGES = ["tha"]
_LOCAL = False
_URLS = {
"split": {
"train": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/train_v1.jsonl",
"val": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/val_v1.jsonl",
"test": "https://raw.githubusercontent.com/byinth/LimeSoda/main/dataset_train_wo_tokentags_v1/test_v1.jsonl",
},
"raw": "https://raw.githubusercontent.com/byinth/LimeSoda/main/LimeSoda/Limesoda.jsonl",
}
_SUPPORTED_TASKS = [Tasks.HOAX_NEWS_CLASSIFICATION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class LimeSodaDataset(datasets.GeneratorBasedBuilder):
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=SOURCE_VERSION,
description="limesoda source schema",
schema="source",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_split_source",
version=SOURCE_VERSION,
description="limesoda source schema",
schema="source",
subset_id=f"{_DATASETNAME}_split",
),
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_text",
version=SEACROWD_VERSION,
description="limesoda SEACrowd schema",
schema="seacrowd_text",
subset_id=_DATASETNAME,
),
SEACrowdConfig(
name=f"{_DATASETNAME}_split_seacrowd_text",
version=SEACROWD_VERSION,
description="limesoda: split SEACrowd schema",
schema="seacrowd_text",
subset_id=f"{_DATASETNAME}_split",
),
]
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
if self.config.subset_id == "limesoda":
features = datasets.Features(
{
"id": datasets.Value("string"),
"title": datasets.Value("string"),
"detail": datasets.Sequence(datasets.Value("string")),
"title_token_tags": datasets.Value("string"),
"detail_token_tags": datasets.Sequence(datasets.Value("string")),
"document_tag": datasets.Value("string"),
}
)
else:
features = datasets.Features({"id": datasets.Value("string"), "text": datasets.Value("string"), "document_tag": datasets.Value("string")})
elif self.config.schema == "seacrowd_text":
features = schemas.text_features(["Fact News", "Fake News", "Undefined"])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
path_dict = dl_manager.download_and_extract(_URLS)
if self.config.subset_id == "limesoda":
raw_path = path_dict["raw"]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": raw_path,
},
),
]
elif self.config.subset_id == "limesoda_split":
train_path, val_path, test_path = path_dict["split"]["train"], path_dict["split"]["val"], path_dict["split"]["test"]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_path,
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": val_path,
},
),
]
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
with open(filepath, "r") as f:
entries = [json.loads(line) for line in f.readlines()]
if self.config.schema == "source":
if self.config.subset_id == "limesoda":
for i, row in enumerate(entries):
ex = {"id": str(i), "title": row["Title"], "detail": row["Detail"], "title_token_tags": row["Title Token Tags"], "detail_token_tags": row["Detail Token Tags"], "document_tag": row["Document Tag"]}
yield i, ex
else:
for i, row in enumerate(entries):
ex = {"id": str(i), "text": row["Text"], "document_tag": row["Document Tag"]}
yield i, ex
elif self.config.schema == "seacrowd_text":
for i, row in enumerate(entries):
ex = {
"id": str(i),
"text": row["Detail"] if self.config.subset_id == "limesoda" else row["Text"],
"label": row["Document Tag"],
}
yield i, ex
|