File size: 17,676 Bytes
0293712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
"""
SEACrowd Data Loader for M3LS.
"""
import json
import os
from collections.abc import Iterable
from copy import deepcopy
from typing import Dict, Generator, List, Tuple, Union

try:
    import PIL
except (ImportError, ModuleNotFoundError):
    print("Please install `PIL` to load image-based data from M3LS dataloader.")
else:
    PIL.__version__  # to avoid being marked by formatter

import datasets
from datasets.download.download_manager import DownloadManager

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks

_CITATION = r"""
@inproceedings{verma-etal-2023-large,
    title = "Large Scale Multi-Lingual Multi-Modal Summarization Dataset",
    author = "Verma, Yash  and
      Jangra, Anubhav  and
      Verma, Raghvendra  and
      Saha, Sriparna",
    editor = "Vlachos, Andreas  and
      Augenstein, Isabelle",
    booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
    month = may,
    year = "2023",
    address = "Dubrovnik, Croatia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.eacl-main.263",
    doi = "10.18653/v1/2023.eacl-main.263",
    pages = "3620--3632",
}
"""

logger = datasets.logging.get_logger(__name__)

_LOCAL = False
_LANGUAGES = ["ind"]


_DATASETNAME = "m3ls"
_DESCRIPTION = r"""
The multilingual multimodal summarization dataset (M3LS) consists of over a million instances of document-image pairs
along with a professionally annotated multimodal summary for each pair.
It is derived from news articles published by the British Broadcasting Corporation (BBC) over a decade and spans 20 total languages,
which Indonesian is the only SEA language available on this dataset.
"""

_HOMEPAGE = "https://github.com/anubhav-jangra/M3LS/tree/main"
_LICENSE = Licenses.MIT.value

_URL = "https://drive.google.com/uc?id=1Kznkw7YpRiWpdgH4_SVNwp0uGf3j-5e2"

_SUPPORTED_TASKS = [Tasks.SUMMARIZATION, Tasks.IMAGE_CAPTIONING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"

_CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]


class M3LSDataset(datasets.GeneratorBasedBuilder):
    """M3LS dataset of Indonesian Language (from BBC Indonesian)"""

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name=f"{_DATASETNAME}_source",
            version=datasets.Version(_SOURCE_VERSION),
            description=f"{_DATASETNAME} source schema",
            schema="source",
            subset_id=f"{_DATASETNAME}",
        ),
        *[
            SEACrowdConfig(
                name=f"{_DATASETNAME}_seacrowd_{cfg_sufix}",
                version=datasets.Version(_SEACROWD_VERSION),
                description=f"{_DATASETNAME} seacrowd schema for {task.name}",
                schema=f"seacrowd_{cfg_sufix}",
                subset_id=f"{_DATASETNAME}",
            )
            for task, cfg_sufix in zip(_SUPPORTED_TASKS, _CONFIG_SUFFIXES_FOR_TASK)
        ],
    ]

    def _info(self) -> datasets.DatasetInfo:
        _config_schema_name = self.config.schema
        logger.info(f"Received schema name: {self.config.schema}")

        if _config_schema_name == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "date": datasets.Value("string"),
                    "url": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    "summary": datasets.Value("string"),
                    "keyword": datasets.Sequence(datasets.Value("string")),
                    "related": datasets.Sequence(datasets.Value("string")),
                    "section_headers": datasets.Sequence(datasets.Value("string")),
                    "paragraphs": datasets.Sequence(datasets.Value("string")),
                    "images": datasets.Sequence(datasets.Image()),
                    "captions": datasets.Sequence(datasets.Value("string")),
                }
            )

        # speech-text schema
        elif _config_schema_name == "seacrowd_t2t":
            features = schemas.text2text_features

        elif _config_schema_name == "seacrowd_imtext":
            features = schemas.image_text_features()

        else:
            raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
        try:
            import gdown
        except ImportError:
            raise ImportError("Please install `gdown` to enable downloading data from google drive.")

        # Download from Google drive
        output_dir = os.path.join(os.getcwd(), "data", "m3ls")
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        output_file = output_dir + "/m3ls.zip"
        if not os.path.exists(output_file):
            gdown.download(_URL, str(output_file), fuzzy=True)
        else:
            logger.info(f"File already downloaded: {str(output_file)}")

        local_path = os.path.join(dl_manager.extract(output_file).title(), "bbcindonesia")

        # there are two folders all containing json files, namely "processed" and "articles"
        # both are having articles info with url, text, and accompanied resource scrapped (i.e image & captions, related articles)

        # the "processed" contains only 244 data, which 156 of them doesn't have any title info
        # whereas "articles" contains 56108 data (the same reported as the wholly data in paper), all having title info

        # no intersection of links for both, nor information provided, hence we will only take "articles" due to matched info w/ their paper
        # the original paper mentioned 80:10:10 splits for over, but there is no info for such splitting index on the extracted folder
        article_data_dir = os.path.join(local_path, "articles")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "article_data_dir": article_data_dir,
                    "image_folder": os.path.join(local_path, "imagefolder"),
                },
            )
        ]

    def _generate_examples(self, article_data_dir: str, image_folder: str) -> Generator[Tuple[int, Dict], None, None]:
        _config_schema_name = self.config.schema
        all_image_filename = os.listdir(image_folder)

        idx = 1
        im_data_idx = 1
        for filename in os.listdir(article_data_dir):
            root_data, content_data = self.__json_read_and_process(os.path.join(article_data_dir, filename))

            # for images, it has around 6.7% missing rate (15625 out of 230163)
            if _config_schema_name == "source":
                content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="all")
                image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename)

                yield idx, {
                    "id": idx,
                    "date": root_data["date"],
                    "url": root_data["url"],
                    "title": root_data["title"],
                    "summary": root_data["summary"],
                    "keyword": root_data["keyword"],
                    "related": root_data["related"],
                    "section_headers": content_data["section_headers"],
                    "paragraphs": content_data["paragraphs"],
                    "images": image_path,
                    "captions": captions,
                }

            elif _config_schema_name == "seacrowd_t2t":
                content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="text")
                yield idx, {
                    "id": idx,
                    "text_1": "\n".join(content_data["paragraphs"]),
                    "text_2": root_data["summary"],
                    "text_1_name": "texts",
                    "text_2_name": "summary",
                }

            elif _config_schema_name == "seacrowd_imtext":
                content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="image")
                image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename, both_exists=True)

                if image_path == []:
                    continue

                for path_idx in range(len(image_path)):
                    yield im_data_idx, {
                        "id": im_data_idx,
                        "image_paths": [image_path[path_idx]],
                        "texts": captions[path_idx],
                        "metadata": {
                            "context": root_data["url"],
                            "labels": None,
                        },
                    }
                    im_data_idx += 1

            else:
                raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")

            idx += 1

    @staticmethod
    def __check_only_1level_iterables(iter_obj):
        return all([not isinstance(data, Iterable) or isinstance(data, str) for data in iter_obj])

    @classmethod
    def __json_read_and_process(cls, path: str) -> Dict:

        # to check (for compulsory keys) and reconstruct (for optional keys) the json data
        def base_data_reconstructor(json_data: dict, return_split: bool = True) -> Union[Dict, Tuple[Dict, Dict]]:

            # for detecting content-based dict-keys (it's denoted by int-based keys in string type)
            def parse_or_check_int(val: Union[int, str, float], is_parse: bool = True):
                try:
                    int(val)
                except (ValueError, TypeError):
                    return val if is_parse else False
                else:
                    return int(val) if is_parse else True

            compulsory_keys = ["summary", "url", "title"]
            optional_keys = ["date", "keyword", "related"]
            optional_key_mapper = list(zip(optional_keys, ["Not available", [], []]))

            if any(key not in json_data.keys() for key in compulsory_keys):
                raise KeyError(f"Missing keys of {list(set(compulsory_keys).difference(json_data.keys()))}")

            for key, default_val in optional_key_mapper:
                _existing_val = json_data.get(key)
                new_data = {key: json_data.get(key) if _existing_val is not None else default_val}
                json_data.update(new_data)

            all_content_keys = [key for key in json_data.keys() if parse_or_check_int(key, is_parse=False)]

            if sorted(compulsory_keys + optional_keys + all_content_keys) != sorted(json_data.keys()):
                raise KeyError("Some keys are unexpectedly missing or present!")

            content_data = {key: json_data[key] for key in all_content_keys}

            if not return_split:
                json_data.update(content_data)
                return json_data
            else:
                root_data = {key: val for key, val in json_data.items() if key not in all_content_keys}
                return root_data, content_data

        def non_content_data_validator(json_data: dict):
            non_content_dtypes = [("url", str), ("title", str), ("date", str), ("summary", str), ("keyword", list), ("related", list)]

            for key, _type in non_content_dtypes:
                if not isinstance(json_data[key], _type):
                    raise TypeError(f"The dict has key {key} that doesn't match with expected type {_type}!")

                # assert only 1-level for list types
                if _type == list:
                    if not cls.__check_only_1level_iterables(json_data[key]):
                        raise ValueError(f"Found iterables in {key} for val {json_data[key]}")

        with open(path, "r") as f:
            json_input = json.load(f)

        base_data, content_data = base_data_reconstructor(json_input)

        non_content_data_validator(base_data)

        return base_data, content_data

    @classmethod
    def __m3ls_content_data_reconstructor_and_validator(cls, json_content_data: Dict, mode: str = "all") -> Dict:
        # `mode` variable scope will be shared to all subfunctions under this fn
        if mode not in ("all", "image", "text"):
            raise ValueError("Unexpected `mode`! Accepted: 'all', 'image', or 'text'.")

        all_content_ftrs = ("images", "para", "subheading")
        expected_dtypes = (list, list, str)
        default_values = ([["", ""]], [], "")

        _all_ftr_validation_info = {all_content_ftrs[_idx]: {"dtype": expected_dtypes[_idx], "default_val": default_values[_idx]} for _idx in range(len(all_content_ftrs))}

        if mode == "all":
            ftr_idx = list(range(3))
        elif mode == "image":
            ftr_idx = list(range(1))
        elif mode == "text":
            ftr_idx = list(range(1, 3))

        ftr_validation_info = {all_content_ftrs[_idx]: _all_ftr_validation_info[all_content_ftrs[_idx]] for _idx in ftr_idx}

        def content_data_reconstructor(json_data: dict):
            json_data = deepcopy(json_data)

            for key, content_dict in json_data.items():
                for ftr, ftr_info in ftr_validation_info.items():
                    if content_dict.get(ftr) is None:
                        json_data[key][ftr] = ftr_info["default_val"]

            return json_data

        def content_data_validator(content_data: dict):
            for content_dict in content_data.values():
                if not isinstance(content_dict, dict):
                    raise TypeError("Unexpected type found on content data!")

                for ftr_name, ftr_info in ftr_validation_info.items():
                    _type = ftr_info["dtype"]
                    if not isinstance(content_dict[ftr_name], _type):
                        raise TypeError(f"Unexpected type found on content {ftr_name} data! Expected {_type}, got {type(content_dict[ftr_name])}")

                if "para" in ftr_validation_info.keys() and not cls.__check_only_1level_iterables(content_dict["para"]):
                    raise ValueError("Found iterable in the 'paragraph' data!")

                if "images" in ftr_validation_info.keys() and not all([isinstance(image_data, list) for image_data in content_dict["images"]]):
                    raise ValueError("Found non-list in the 'images' data!")

                if "images" in ftr_validation_info.keys() and not all([len(image_data) == 2 for image_data in content_dict["images"]]):
                    raise ValueError("Found non-paired tuples in the 'images' data!")

                if "images" in ftr_validation_info.keys() and not all([cls.__check_only_1level_iterables(image_data) for image_data in content_dict["images"]]):
                    raise ValueError("Found iterable in the 'images' individual data!")

        def m3ls_content_data_post_process(content_data: dict) -> Dict:
            output_json = {}
            for _ftr in ftr_validation_info.keys():
                output_data = []
                for value in content_data.values():
                    output_data.append(value[_ftr])
                output_json[_ftr] = output_data

            # post process each features
            if "para" in ftr_validation_info.keys():
                paragraphs = []
                for section_data in output_json.pop("para"):
                    paragraphs.append("".join([val for val in section_data if val.strip() != ""]))
                output_json["paragraphs"] = paragraphs

            if "images" in ftr_validation_info.keys():
                list_image_paths = []
                list_captions = []
                for sectioned_data in output_json.pop("images"):
                    for val in sectioned_data:
                        list_image_paths.append(val[0])
                        list_captions.append("" if val[1] is None else val[1].strip())
                output_json["image_paths"] = list_image_paths
                output_json["captions"] = list_captions

            if "subheading" in ftr_validation_info.keys():
                output_json["section_headers"] = output_json.pop("subheading")

            return output_json

        content_data = content_data_reconstructor(json_content_data)

        content_data_validator(content_data)

        content_data = m3ls_content_data_post_process(content_data)

        return content_data

    @staticmethod
    def __m3ls_filter_image_and_captions_data(image_data: list, captions_data: list, base_image_folder: str, all_images: list, both_exists: bool = False) -> Tuple[List, List]:
        image_path, captions = [], []

        if len(captions_data) != len(image_data):
            raise ValueError("Not a 1-1 mapping of image-captions!")

        for idx, img_path in enumerate(image_data):
            if img_path in all_images:
                if both_exists and captions_data[idx] == "":
                    continue
                image_path.append(os.path.join(base_image_folder, img_path))
                captions.append(captions_data[idx])

        return image_path, captions