File size: 17,676 Bytes
0293712 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
"""
SEACrowd Data Loader for M3LS.
"""
import json
import os
from collections.abc import Iterable
from copy import deepcopy
from typing import Dict, Generator, List, Tuple, Union
try:
import PIL
except (ImportError, ModuleNotFoundError):
print("Please install `PIL` to load image-based data from M3LS dataloader.")
else:
PIL.__version__ # to avoid being marked by formatter
import datasets
from datasets.download.download_manager import DownloadManager
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks
_CITATION = r"""
@inproceedings{verma-etal-2023-large,
title = "Large Scale Multi-Lingual Multi-Modal Summarization Dataset",
author = "Verma, Yash and
Jangra, Anubhav and
Verma, Raghvendra and
Saha, Sriparna",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.263",
doi = "10.18653/v1/2023.eacl-main.263",
pages = "3620--3632",
}
"""
logger = datasets.logging.get_logger(__name__)
_LOCAL = False
_LANGUAGES = ["ind"]
_DATASETNAME = "m3ls"
_DESCRIPTION = r"""
The multilingual multimodal summarization dataset (M3LS) consists of over a million instances of document-image pairs
along with a professionally annotated multimodal summary for each pair.
It is derived from news articles published by the British Broadcasting Corporation (BBC) over a decade and spans 20 total languages,
which Indonesian is the only SEA language available on this dataset.
"""
_HOMEPAGE = "https://github.com/anubhav-jangra/M3LS/tree/main"
_LICENSE = Licenses.MIT.value
_URL = "https://drive.google.com/uc?id=1Kznkw7YpRiWpdgH4_SVNwp0uGf3j-5e2"
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION, Tasks.IMAGE_CAPTIONING]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
_CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS]
class M3LSDataset(datasets.GeneratorBasedBuilder):
"""M3LS dataset of Indonesian Language (from BBC Indonesian)"""
BUILDER_CONFIGS = [
SEACrowdConfig(
name=f"{_DATASETNAME}_source",
version=datasets.Version(_SOURCE_VERSION),
description=f"{_DATASETNAME} source schema",
schema="source",
subset_id=f"{_DATASETNAME}",
),
*[
SEACrowdConfig(
name=f"{_DATASETNAME}_seacrowd_{cfg_sufix}",
version=datasets.Version(_SEACROWD_VERSION),
description=f"{_DATASETNAME} seacrowd schema for {task.name}",
schema=f"seacrowd_{cfg_sufix}",
subset_id=f"{_DATASETNAME}",
)
for task, cfg_sufix in zip(_SUPPORTED_TASKS, _CONFIG_SUFFIXES_FOR_TASK)
],
]
def _info(self) -> datasets.DatasetInfo:
_config_schema_name = self.config.schema
logger.info(f"Received schema name: {self.config.schema}")
if _config_schema_name == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"date": datasets.Value("string"),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
"summary": datasets.Value("string"),
"keyword": datasets.Sequence(datasets.Value("string")),
"related": datasets.Sequence(datasets.Value("string")),
"section_headers": datasets.Sequence(datasets.Value("string")),
"paragraphs": datasets.Sequence(datasets.Value("string")),
"images": datasets.Sequence(datasets.Image()),
"captions": datasets.Sequence(datasets.Value("string")),
}
)
# speech-text schema
elif _config_schema_name == "seacrowd_t2t":
features = schemas.text2text_features
elif _config_schema_name == "seacrowd_imtext":
features = schemas.image_text_features()
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]:
try:
import gdown
except ImportError:
raise ImportError("Please install `gdown` to enable downloading data from google drive.")
# Download from Google drive
output_dir = os.path.join(os.getcwd(), "data", "m3ls")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_file = output_dir + "/m3ls.zip"
if not os.path.exists(output_file):
gdown.download(_URL, str(output_file), fuzzy=True)
else:
logger.info(f"File already downloaded: {str(output_file)}")
local_path = os.path.join(dl_manager.extract(output_file).title(), "bbcindonesia")
# there are two folders all containing json files, namely "processed" and "articles"
# both are having articles info with url, text, and accompanied resource scrapped (i.e image & captions, related articles)
# the "processed" contains only 244 data, which 156 of them doesn't have any title info
# whereas "articles" contains 56108 data (the same reported as the wholly data in paper), all having title info
# no intersection of links for both, nor information provided, hence we will only take "articles" due to matched info w/ their paper
# the original paper mentioned 80:10:10 splits for over, but there is no info for such splitting index on the extracted folder
article_data_dir = os.path.join(local_path, "articles")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"article_data_dir": article_data_dir,
"image_folder": os.path.join(local_path, "imagefolder"),
},
)
]
def _generate_examples(self, article_data_dir: str, image_folder: str) -> Generator[Tuple[int, Dict], None, None]:
_config_schema_name = self.config.schema
all_image_filename = os.listdir(image_folder)
idx = 1
im_data_idx = 1
for filename in os.listdir(article_data_dir):
root_data, content_data = self.__json_read_and_process(os.path.join(article_data_dir, filename))
# for images, it has around 6.7% missing rate (15625 out of 230163)
if _config_schema_name == "source":
content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="all")
image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename)
yield idx, {
"id": idx,
"date": root_data["date"],
"url": root_data["url"],
"title": root_data["title"],
"summary": root_data["summary"],
"keyword": root_data["keyword"],
"related": root_data["related"],
"section_headers": content_data["section_headers"],
"paragraphs": content_data["paragraphs"],
"images": image_path,
"captions": captions,
}
elif _config_schema_name == "seacrowd_t2t":
content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="text")
yield idx, {
"id": idx,
"text_1": "\n".join(content_data["paragraphs"]),
"text_2": root_data["summary"],
"text_1_name": "texts",
"text_2_name": "summary",
}
elif _config_schema_name == "seacrowd_imtext":
content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="image")
image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename, both_exists=True)
if image_path == []:
continue
for path_idx in range(len(image_path)):
yield im_data_idx, {
"id": im_data_idx,
"image_paths": [image_path[path_idx]],
"texts": captions[path_idx],
"metadata": {
"context": root_data["url"],
"labels": None,
},
}
im_data_idx += 1
else:
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!")
idx += 1
@staticmethod
def __check_only_1level_iterables(iter_obj):
return all([not isinstance(data, Iterable) or isinstance(data, str) for data in iter_obj])
@classmethod
def __json_read_and_process(cls, path: str) -> Dict:
# to check (for compulsory keys) and reconstruct (for optional keys) the json data
def base_data_reconstructor(json_data: dict, return_split: bool = True) -> Union[Dict, Tuple[Dict, Dict]]:
# for detecting content-based dict-keys (it's denoted by int-based keys in string type)
def parse_or_check_int(val: Union[int, str, float], is_parse: bool = True):
try:
int(val)
except (ValueError, TypeError):
return val if is_parse else False
else:
return int(val) if is_parse else True
compulsory_keys = ["summary", "url", "title"]
optional_keys = ["date", "keyword", "related"]
optional_key_mapper = list(zip(optional_keys, ["Not available", [], []]))
if any(key not in json_data.keys() for key in compulsory_keys):
raise KeyError(f"Missing keys of {list(set(compulsory_keys).difference(json_data.keys()))}")
for key, default_val in optional_key_mapper:
_existing_val = json_data.get(key)
new_data = {key: json_data.get(key) if _existing_val is not None else default_val}
json_data.update(new_data)
all_content_keys = [key for key in json_data.keys() if parse_or_check_int(key, is_parse=False)]
if sorted(compulsory_keys + optional_keys + all_content_keys) != sorted(json_data.keys()):
raise KeyError("Some keys are unexpectedly missing or present!")
content_data = {key: json_data[key] for key in all_content_keys}
if not return_split:
json_data.update(content_data)
return json_data
else:
root_data = {key: val for key, val in json_data.items() if key not in all_content_keys}
return root_data, content_data
def non_content_data_validator(json_data: dict):
non_content_dtypes = [("url", str), ("title", str), ("date", str), ("summary", str), ("keyword", list), ("related", list)]
for key, _type in non_content_dtypes:
if not isinstance(json_data[key], _type):
raise TypeError(f"The dict has key {key} that doesn't match with expected type {_type}!")
# assert only 1-level for list types
if _type == list:
if not cls.__check_only_1level_iterables(json_data[key]):
raise ValueError(f"Found iterables in {key} for val {json_data[key]}")
with open(path, "r") as f:
json_input = json.load(f)
base_data, content_data = base_data_reconstructor(json_input)
non_content_data_validator(base_data)
return base_data, content_data
@classmethod
def __m3ls_content_data_reconstructor_and_validator(cls, json_content_data: Dict, mode: str = "all") -> Dict:
# `mode` variable scope will be shared to all subfunctions under this fn
if mode not in ("all", "image", "text"):
raise ValueError("Unexpected `mode`! Accepted: 'all', 'image', or 'text'.")
all_content_ftrs = ("images", "para", "subheading")
expected_dtypes = (list, list, str)
default_values = ([["", ""]], [], "")
_all_ftr_validation_info = {all_content_ftrs[_idx]: {"dtype": expected_dtypes[_idx], "default_val": default_values[_idx]} for _idx in range(len(all_content_ftrs))}
if mode == "all":
ftr_idx = list(range(3))
elif mode == "image":
ftr_idx = list(range(1))
elif mode == "text":
ftr_idx = list(range(1, 3))
ftr_validation_info = {all_content_ftrs[_idx]: _all_ftr_validation_info[all_content_ftrs[_idx]] for _idx in ftr_idx}
def content_data_reconstructor(json_data: dict):
json_data = deepcopy(json_data)
for key, content_dict in json_data.items():
for ftr, ftr_info in ftr_validation_info.items():
if content_dict.get(ftr) is None:
json_data[key][ftr] = ftr_info["default_val"]
return json_data
def content_data_validator(content_data: dict):
for content_dict in content_data.values():
if not isinstance(content_dict, dict):
raise TypeError("Unexpected type found on content data!")
for ftr_name, ftr_info in ftr_validation_info.items():
_type = ftr_info["dtype"]
if not isinstance(content_dict[ftr_name], _type):
raise TypeError(f"Unexpected type found on content {ftr_name} data! Expected {_type}, got {type(content_dict[ftr_name])}")
if "para" in ftr_validation_info.keys() and not cls.__check_only_1level_iterables(content_dict["para"]):
raise ValueError("Found iterable in the 'paragraph' data!")
if "images" in ftr_validation_info.keys() and not all([isinstance(image_data, list) for image_data in content_dict["images"]]):
raise ValueError("Found non-list in the 'images' data!")
if "images" in ftr_validation_info.keys() and not all([len(image_data) == 2 for image_data in content_dict["images"]]):
raise ValueError("Found non-paired tuples in the 'images' data!")
if "images" in ftr_validation_info.keys() and not all([cls.__check_only_1level_iterables(image_data) for image_data in content_dict["images"]]):
raise ValueError("Found iterable in the 'images' individual data!")
def m3ls_content_data_post_process(content_data: dict) -> Dict:
output_json = {}
for _ftr in ftr_validation_info.keys():
output_data = []
for value in content_data.values():
output_data.append(value[_ftr])
output_json[_ftr] = output_data
# post process each features
if "para" in ftr_validation_info.keys():
paragraphs = []
for section_data in output_json.pop("para"):
paragraphs.append("".join([val for val in section_data if val.strip() != ""]))
output_json["paragraphs"] = paragraphs
if "images" in ftr_validation_info.keys():
list_image_paths = []
list_captions = []
for sectioned_data in output_json.pop("images"):
for val in sectioned_data:
list_image_paths.append(val[0])
list_captions.append("" if val[1] is None else val[1].strip())
output_json["image_paths"] = list_image_paths
output_json["captions"] = list_captions
if "subheading" in ftr_validation_info.keys():
output_json["section_headers"] = output_json.pop("subheading")
return output_json
content_data = content_data_reconstructor(json_content_data)
content_data_validator(content_data)
content_data = m3ls_content_data_post_process(content_data)
return content_data
@staticmethod
def __m3ls_filter_image_and_captions_data(image_data: list, captions_data: list, base_image_folder: str, all_images: list, both_exists: bool = False) -> Tuple[List, List]:
image_path, captions = [], []
if len(captions_data) != len(image_data):
raise ValueError("Not a 1-1 mapping of image-captions!")
for idx, img_path in enumerate(image_data):
if img_path in all_images:
if both_exists and captions_data[idx] == "":
continue
image_path.append(os.path.join(base_image_folder, img_path))
captions.append(captions_data[idx])
return image_path, captions
|