|
""" |
|
SEACrowd Data Loader for M3LS. |
|
""" |
|
import json |
|
import os |
|
from collections.abc import Iterable |
|
from copy import deepcopy |
|
from typing import Dict, Generator, List, Tuple, Union |
|
|
|
try: |
|
import PIL |
|
except (ImportError, ModuleNotFoundError): |
|
print("Please install `PIL` to load image-based data from M3LS dataloader.") |
|
else: |
|
PIL.__version__ |
|
|
|
import datasets |
|
from datasets.download.download_manager import DownloadManager |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import TASK_TO_SCHEMA, Licenses, Tasks |
|
|
|
_CITATION = r""" |
|
@inproceedings{verma-etal-2023-large, |
|
title = "Large Scale Multi-Lingual Multi-Modal Summarization Dataset", |
|
author = "Verma, Yash and |
|
Jangra, Anubhav and |
|
Verma, Raghvendra and |
|
Saha, Sriparna", |
|
editor = "Vlachos, Andreas and |
|
Augenstein, Isabelle", |
|
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics", |
|
month = may, |
|
year = "2023", |
|
address = "Dubrovnik, Croatia", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2023.eacl-main.263", |
|
doi = "10.18653/v1/2023.eacl-main.263", |
|
pages = "3620--3632", |
|
} |
|
""" |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_LOCAL = False |
|
_LANGUAGES = ["ind"] |
|
|
|
|
|
_DATASETNAME = "m3ls" |
|
_DESCRIPTION = r""" |
|
The multilingual multimodal summarization dataset (M3LS) consists of over a million instances of document-image pairs |
|
along with a professionally annotated multimodal summary for each pair. |
|
It is derived from news articles published by the British Broadcasting Corporation (BBC) over a decade and spans 20 total languages, |
|
which Indonesian is the only SEA language available on this dataset. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/anubhav-jangra/M3LS/tree/main" |
|
_LICENSE = Licenses.MIT.value |
|
|
|
_URL = "https://drive.google.com/uc?id=1Kznkw7YpRiWpdgH4_SVNwp0uGf3j-5e2" |
|
|
|
_SUPPORTED_TASKS = [Tasks.SUMMARIZATION, Tasks.IMAGE_CAPTIONING] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_CONFIG_SUFFIXES_FOR_TASK = [TASK_TO_SCHEMA.get(task).lower() for task in _SUPPORTED_TASKS] |
|
|
|
|
|
class M3LSDataset(datasets.GeneratorBasedBuilder): |
|
"""M3LS dataset of Indonesian Language (from BBC Indonesian)""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=datasets.Version(_SOURCE_VERSION), |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
*[ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{cfg_sufix}", |
|
version=datasets.Version(_SEACROWD_VERSION), |
|
description=f"{_DATASETNAME} seacrowd schema for {task.name}", |
|
schema=f"seacrowd_{cfg_sufix}", |
|
subset_id=f"{_DATASETNAME}", |
|
) |
|
for task, cfg_sufix in zip(_SUPPORTED_TASKS, _CONFIG_SUFFIXES_FOR_TASK) |
|
], |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
_config_schema_name = self.config.schema |
|
logger.info(f"Received schema name: {self.config.schema}") |
|
|
|
if _config_schema_name == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"url": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"keyword": datasets.Sequence(datasets.Value("string")), |
|
"related": datasets.Sequence(datasets.Value("string")), |
|
"section_headers": datasets.Sequence(datasets.Value("string")), |
|
"paragraphs": datasets.Sequence(datasets.Value("string")), |
|
"images": datasets.Sequence(datasets.Image()), |
|
"captions": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
|
|
|
|
elif _config_schema_name == "seacrowd_t2t": |
|
features = schemas.text2text_features |
|
|
|
elif _config_schema_name == "seacrowd_imtext": |
|
features = schemas.image_text_features() |
|
|
|
else: |
|
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: DownloadManager) -> List[datasets.SplitGenerator]: |
|
try: |
|
import gdown |
|
except ImportError: |
|
raise ImportError("Please install `gdown` to enable downloading data from google drive.") |
|
|
|
|
|
output_dir = os.path.join(os.getcwd(), "data", "m3ls") |
|
if not os.path.exists(output_dir): |
|
os.makedirs(output_dir) |
|
output_file = output_dir + "/m3ls.zip" |
|
if not os.path.exists(output_file): |
|
gdown.download(_URL, str(output_file), fuzzy=True) |
|
else: |
|
logger.info(f"File already downloaded: {str(output_file)}") |
|
|
|
local_path = os.path.join(dl_manager.extract(output_file).title(), "bbcindonesia") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
article_data_dir = os.path.join(local_path, "articles") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"article_data_dir": article_data_dir, |
|
"image_folder": os.path.join(local_path, "imagefolder"), |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, article_data_dir: str, image_folder: str) -> Generator[Tuple[int, Dict], None, None]: |
|
_config_schema_name = self.config.schema |
|
all_image_filename = os.listdir(image_folder) |
|
|
|
idx = 1 |
|
im_data_idx = 1 |
|
for filename in os.listdir(article_data_dir): |
|
root_data, content_data = self.__json_read_and_process(os.path.join(article_data_dir, filename)) |
|
|
|
|
|
if _config_schema_name == "source": |
|
content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="all") |
|
image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename) |
|
|
|
yield idx, { |
|
"id": idx, |
|
"date": root_data["date"], |
|
"url": root_data["url"], |
|
"title": root_data["title"], |
|
"summary": root_data["summary"], |
|
"keyword": root_data["keyword"], |
|
"related": root_data["related"], |
|
"section_headers": content_data["section_headers"], |
|
"paragraphs": content_data["paragraphs"], |
|
"images": image_path, |
|
"captions": captions, |
|
} |
|
|
|
elif _config_schema_name == "seacrowd_t2t": |
|
content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="text") |
|
yield idx, { |
|
"id": idx, |
|
"text_1": "\n".join(content_data["paragraphs"]), |
|
"text_2": root_data["summary"], |
|
"text_1_name": "texts", |
|
"text_2_name": "summary", |
|
} |
|
|
|
elif _config_schema_name == "seacrowd_imtext": |
|
content_data = self.__m3ls_content_data_reconstructor_and_validator(content_data, mode="image") |
|
image_path, captions = self.__m3ls_filter_image_and_captions_data(content_data["image_paths"], content_data["captions"], image_folder, all_image_filename, both_exists=True) |
|
|
|
if image_path == []: |
|
continue |
|
|
|
for path_idx in range(len(image_path)): |
|
yield im_data_idx, { |
|
"id": im_data_idx, |
|
"image_paths": [image_path[path_idx]], |
|
"texts": captions[path_idx], |
|
"metadata": { |
|
"context": root_data["url"], |
|
"labels": None, |
|
}, |
|
} |
|
im_data_idx += 1 |
|
|
|
else: |
|
raise ValueError(f"Received unexpected config schema of {_config_schema_name}!") |
|
|
|
idx += 1 |
|
|
|
@staticmethod |
|
def __check_only_1level_iterables(iter_obj): |
|
return all([not isinstance(data, Iterable) or isinstance(data, str) for data in iter_obj]) |
|
|
|
@classmethod |
|
def __json_read_and_process(cls, path: str) -> Dict: |
|
|
|
|
|
def base_data_reconstructor(json_data: dict, return_split: bool = True) -> Union[Dict, Tuple[Dict, Dict]]: |
|
|
|
|
|
def parse_or_check_int(val: Union[int, str, float], is_parse: bool = True): |
|
try: |
|
int(val) |
|
except (ValueError, TypeError): |
|
return val if is_parse else False |
|
else: |
|
return int(val) if is_parse else True |
|
|
|
compulsory_keys = ["summary", "url", "title"] |
|
optional_keys = ["date", "keyword", "related"] |
|
optional_key_mapper = list(zip(optional_keys, ["Not available", [], []])) |
|
|
|
if any(key not in json_data.keys() for key in compulsory_keys): |
|
raise KeyError(f"Missing keys of {list(set(compulsory_keys).difference(json_data.keys()))}") |
|
|
|
for key, default_val in optional_key_mapper: |
|
_existing_val = json_data.get(key) |
|
new_data = {key: json_data.get(key) if _existing_val is not None else default_val} |
|
json_data.update(new_data) |
|
|
|
all_content_keys = [key for key in json_data.keys() if parse_or_check_int(key, is_parse=False)] |
|
|
|
if sorted(compulsory_keys + optional_keys + all_content_keys) != sorted(json_data.keys()): |
|
raise KeyError("Some keys are unexpectedly missing or present!") |
|
|
|
content_data = {key: json_data[key] for key in all_content_keys} |
|
|
|
if not return_split: |
|
json_data.update(content_data) |
|
return json_data |
|
else: |
|
root_data = {key: val for key, val in json_data.items() if key not in all_content_keys} |
|
return root_data, content_data |
|
|
|
def non_content_data_validator(json_data: dict): |
|
non_content_dtypes = [("url", str), ("title", str), ("date", str), ("summary", str), ("keyword", list), ("related", list)] |
|
|
|
for key, _type in non_content_dtypes: |
|
if not isinstance(json_data[key], _type): |
|
raise TypeError(f"The dict has key {key} that doesn't match with expected type {_type}!") |
|
|
|
|
|
if _type == list: |
|
if not cls.__check_only_1level_iterables(json_data[key]): |
|
raise ValueError(f"Found iterables in {key} for val {json_data[key]}") |
|
|
|
with open(path, "r") as f: |
|
json_input = json.load(f) |
|
|
|
base_data, content_data = base_data_reconstructor(json_input) |
|
|
|
non_content_data_validator(base_data) |
|
|
|
return base_data, content_data |
|
|
|
@classmethod |
|
def __m3ls_content_data_reconstructor_and_validator(cls, json_content_data: Dict, mode: str = "all") -> Dict: |
|
|
|
if mode not in ("all", "image", "text"): |
|
raise ValueError("Unexpected `mode`! Accepted: 'all', 'image', or 'text'.") |
|
|
|
all_content_ftrs = ("images", "para", "subheading") |
|
expected_dtypes = (list, list, str) |
|
default_values = ([["", ""]], [], "") |
|
|
|
_all_ftr_validation_info = {all_content_ftrs[_idx]: {"dtype": expected_dtypes[_idx], "default_val": default_values[_idx]} for _idx in range(len(all_content_ftrs))} |
|
|
|
if mode == "all": |
|
ftr_idx = list(range(3)) |
|
elif mode == "image": |
|
ftr_idx = list(range(1)) |
|
elif mode == "text": |
|
ftr_idx = list(range(1, 3)) |
|
|
|
ftr_validation_info = {all_content_ftrs[_idx]: _all_ftr_validation_info[all_content_ftrs[_idx]] for _idx in ftr_idx} |
|
|
|
def content_data_reconstructor(json_data: dict): |
|
json_data = deepcopy(json_data) |
|
|
|
for key, content_dict in json_data.items(): |
|
for ftr, ftr_info in ftr_validation_info.items(): |
|
if content_dict.get(ftr) is None: |
|
json_data[key][ftr] = ftr_info["default_val"] |
|
|
|
return json_data |
|
|
|
def content_data_validator(content_data: dict): |
|
for content_dict in content_data.values(): |
|
if not isinstance(content_dict, dict): |
|
raise TypeError("Unexpected type found on content data!") |
|
|
|
for ftr_name, ftr_info in ftr_validation_info.items(): |
|
_type = ftr_info["dtype"] |
|
if not isinstance(content_dict[ftr_name], _type): |
|
raise TypeError(f"Unexpected type found on content {ftr_name} data! Expected {_type}, got {type(content_dict[ftr_name])}") |
|
|
|
if "para" in ftr_validation_info.keys() and not cls.__check_only_1level_iterables(content_dict["para"]): |
|
raise ValueError("Found iterable in the 'paragraph' data!") |
|
|
|
if "images" in ftr_validation_info.keys() and not all([isinstance(image_data, list) for image_data in content_dict["images"]]): |
|
raise ValueError("Found non-list in the 'images' data!") |
|
|
|
if "images" in ftr_validation_info.keys() and not all([len(image_data) == 2 for image_data in content_dict["images"]]): |
|
raise ValueError("Found non-paired tuples in the 'images' data!") |
|
|
|
if "images" in ftr_validation_info.keys() and not all([cls.__check_only_1level_iterables(image_data) for image_data in content_dict["images"]]): |
|
raise ValueError("Found iterable in the 'images' individual data!") |
|
|
|
def m3ls_content_data_post_process(content_data: dict) -> Dict: |
|
output_json = {} |
|
for _ftr in ftr_validation_info.keys(): |
|
output_data = [] |
|
for value in content_data.values(): |
|
output_data.append(value[_ftr]) |
|
output_json[_ftr] = output_data |
|
|
|
|
|
if "para" in ftr_validation_info.keys(): |
|
paragraphs = [] |
|
for section_data in output_json.pop("para"): |
|
paragraphs.append("".join([val for val in section_data if val.strip() != ""])) |
|
output_json["paragraphs"] = paragraphs |
|
|
|
if "images" in ftr_validation_info.keys(): |
|
list_image_paths = [] |
|
list_captions = [] |
|
for sectioned_data in output_json.pop("images"): |
|
for val in sectioned_data: |
|
list_image_paths.append(val[0]) |
|
list_captions.append("" if val[1] is None else val[1].strip()) |
|
output_json["image_paths"] = list_image_paths |
|
output_json["captions"] = list_captions |
|
|
|
if "subheading" in ftr_validation_info.keys(): |
|
output_json["section_headers"] = output_json.pop("subheading") |
|
|
|
return output_json |
|
|
|
content_data = content_data_reconstructor(json_content_data) |
|
|
|
content_data_validator(content_data) |
|
|
|
content_data = m3ls_content_data_post_process(content_data) |
|
|
|
return content_data |
|
|
|
@staticmethod |
|
def __m3ls_filter_image_and_captions_data(image_data: list, captions_data: list, base_image_folder: str, all_images: list, both_exists: bool = False) -> Tuple[List, List]: |
|
image_path, captions = [], [] |
|
|
|
if len(captions_data) != len(image_data): |
|
raise ValueError("Not a 1-1 mapping of image-captions!") |
|
|
|
for idx, img_path in enumerate(image_data): |
|
if img_path in all_images: |
|
if both_exists and captions_data[idx] == "": |
|
continue |
|
image_path.append(os.path.join(base_image_folder, img_path)) |
|
captions.append(captions_data[idx]) |
|
|
|
return image_path, captions |
|
|