Datasets:
holylovenia
commited on
Upload mkqa.py with huggingface_hub
Browse files
mkqa.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from pathlib import Path
|
18 |
+
from typing import Dict, List, Tuple
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from seacrowd.utils import schemas
|
23 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
24 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
25 |
+
|
26 |
+
_CITATION = """\
|
27 |
+
@article{longpre-etal-2021-mkqa,
|
28 |
+
title = "{MKQA}: A Linguistically Diverse Benchmark for Multilingual Open Domain Question Answering",
|
29 |
+
author = "Longpre, Shayne and
|
30 |
+
Lu, Yi and
|
31 |
+
Daiber, Joachim",
|
32 |
+
editor = "Roark, Brian and
|
33 |
+
Nenkova, Ani",
|
34 |
+
journal = "Transactions of the Association for Computational Linguistics",
|
35 |
+
volume = "9",
|
36 |
+
year = "2021",
|
37 |
+
address = "Cambridge, MA",
|
38 |
+
publisher = "MIT Press",
|
39 |
+
url = "https://aclanthology.org/2021.tacl-1.82",
|
40 |
+
doi = "10.1162/tacl_a_00433",
|
41 |
+
pages = "1389--1406",
|
42 |
+
}
|
43 |
+
"""
|
44 |
+
|
45 |
+
_DATASETNAME = "mkqa"
|
46 |
+
|
47 |
+
_DESCRIPTION = """\
|
48 |
+
Multilingual Knowledge Questions and Answers (MKQA), an open-domain question answering evaluation set comprising 10k question-answer pairs aligned across 26 typologically diverse languages (260k question-answer pairs in total)
|
49 |
+
"""
|
50 |
+
|
51 |
+
_HOMEPAGE = "https://github.com/apple/ml-mkqa"
|
52 |
+
|
53 |
+
_LICENSE = Licenses.CC_BY_SA_3_0.value
|
54 |
+
|
55 |
+
_LOCAL = False
|
56 |
+
|
57 |
+
_URLS = {
|
58 |
+
_DATASETNAME: "https://github.com/apple/ml-mkqa/raw/main/dataset/mkqa.jsonl.gz",
|
59 |
+
}
|
60 |
+
|
61 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
62 |
+
|
63 |
+
_SOURCE_VERSION = "1.0.0"
|
64 |
+
|
65 |
+
_SEACROWD_VERSION = "2024.06.20"
|
66 |
+
|
67 |
+
_LANGUAGES = [
|
68 |
+
"khm",
|
69 |
+
"zsm",
|
70 |
+
"tha",
|
71 |
+
"vie",
|
72 |
+
] # follows the convention of 3-letter code as suggested since NusaCrowd.
|
73 |
+
|
74 |
+
|
75 |
+
class MKQADataset(datasets.GeneratorBasedBuilder):
|
76 |
+
"""
|
77 |
+
MKQA, an open-domain question answering evaluation set comprising 10k question-answer pairs
|
78 |
+
aligned across 26 typologically diverse languages (260k question-answer pairs in total).
|
79 |
+
The goal of this dataset is to provide a challenging benchmark for question answering quality
|
80 |
+
across a wide set of languages.
|
81 |
+
"""
|
82 |
+
|
83 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
84 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
85 |
+
|
86 |
+
_ANS_TYPES = [
|
87 |
+
"binary",
|
88 |
+
"date",
|
89 |
+
"entity",
|
90 |
+
"long_answer",
|
91 |
+
"number",
|
92 |
+
"number_with_unit",
|
93 |
+
"short_phrase",
|
94 |
+
"unanswerable",
|
95 |
+
]
|
96 |
+
|
97 |
+
_SOURCE_LANGUAGES = [
|
98 |
+
"km",
|
99 |
+
"ms",
|
100 |
+
"th",
|
101 |
+
"vi",
|
102 |
+
# Filtered out:
|
103 |
+
# "ar", "da", "de", "en", "es", "fi", "fr", "he", "hu", "it", "ja", "ko",
|
104 |
+
# "nl", "no", "pl", "pt", "ru", "sv", "tr", "zh_cn", "zh_hk", "zh_tw",
|
105 |
+
]
|
106 |
+
|
107 |
+
_LANG_3TO2 = {
|
108 |
+
"khm": "km",
|
109 |
+
"zsm": "ms",
|
110 |
+
"tha": "th",
|
111 |
+
"vie": "vi",
|
112 |
+
}
|
113 |
+
|
114 |
+
BUILDER_CONFIGS = [
|
115 |
+
*[
|
116 |
+
SEACrowdConfig(
|
117 |
+
name=f"{_DATASETNAME}_{subset_lang}{'_' if subset_lang else ''}source",
|
118 |
+
version=datasets.Version(_SOURCE_VERSION),
|
119 |
+
description=f"{_DATASETNAME} source schema",
|
120 |
+
schema="source",
|
121 |
+
subset_id=f"{_DATASETNAME}_{subset_lang}",
|
122 |
+
)
|
123 |
+
for subset_lang in ["", *_LANGUAGES]
|
124 |
+
],
|
125 |
+
*[
|
126 |
+
SEACrowdConfig(
|
127 |
+
name=f"{_DATASETNAME}_{subset_lang}{'_' if subset_lang else ''}seacrowd_qa",
|
128 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
129 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
130 |
+
schema="seacrowd_qa",
|
131 |
+
subset_id=f"{_DATASETNAME}_{subset_lang}",
|
132 |
+
)
|
133 |
+
for subset_lang in ["", *_LANGUAGES]
|
134 |
+
],
|
135 |
+
]
|
136 |
+
|
137 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
138 |
+
|
139 |
+
def _info(self) -> datasets.DatasetInfo:
|
140 |
+
lang = self.config.subset_id.rsplit("_", 1)[-1]
|
141 |
+
lang = self._LANG_3TO2.get(lang, lang)
|
142 |
+
|
143 |
+
if self.config.schema == "source":
|
144 |
+
features = datasets.Features(
|
145 |
+
{
|
146 |
+
"query": datasets.Value("string"),
|
147 |
+
"answers": {
|
148 |
+
cur_lang: [
|
149 |
+
{
|
150 |
+
"type": datasets.ClassLabel(names=self._ANS_TYPES),
|
151 |
+
"entity": datasets.Value("string"),
|
152 |
+
"text": datasets.Value("string"),
|
153 |
+
"aliases": [datasets.Value("string")],
|
154 |
+
}
|
155 |
+
]
|
156 |
+
for cur_lang in ([lang] if lang else self._SOURCE_LANGUAGES)
|
157 |
+
},
|
158 |
+
"queries": {cur_lang: datasets.Value("string") for cur_lang in ([lang] if lang else self._SOURCE_LANGUAGES)},
|
159 |
+
"example_id": datasets.Value("string"),
|
160 |
+
}
|
161 |
+
)
|
162 |
+
|
163 |
+
elif self.config.schema == "seacrowd_qa":
|
164 |
+
features = schemas.qa_features
|
165 |
+
features["meta"]["answer_entity"] = datasets.Sequence(datasets.Value("string"))
|
166 |
+
features["meta"]["answer_aliases"] = datasets.Sequence(datasets.Sequence(datasets.Value("string")))
|
167 |
+
features["meta"]["answer_type"] = datasets.Sequence(datasets.ClassLabel(names=self._ANS_TYPES))
|
168 |
+
|
169 |
+
else: # schema not found! should NOT reach here ...
|
170 |
+
raise NotImplementedError()
|
171 |
+
|
172 |
+
return datasets.DatasetInfo(
|
173 |
+
description=_DESCRIPTION,
|
174 |
+
features=features,
|
175 |
+
homepage=_HOMEPAGE,
|
176 |
+
license=_LICENSE,
|
177 |
+
citation=_CITATION,
|
178 |
+
)
|
179 |
+
|
180 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
181 |
+
"""Returns SplitGenerators."""
|
182 |
+
urls = _URLS[_DATASETNAME]
|
183 |
+
data_path = dl_manager.download_and_extract(urls)
|
184 |
+
return [
|
185 |
+
datasets.SplitGenerator(
|
186 |
+
name=datasets.Split.TRAIN,
|
187 |
+
gen_kwargs={"filepath": data_path},
|
188 |
+
),
|
189 |
+
]
|
190 |
+
|
191 |
+
def _generate_examples(self, filepath: Path) -> Tuple[int, Dict]:
|
192 |
+
"""Yields examples as (key, example) tuples."""
|
193 |
+
lang = self.config.subset_id.rsplit("_", 1)[-1]
|
194 |
+
lang = self._LANG_3TO2.get(lang, lang)
|
195 |
+
|
196 |
+
datas = []
|
197 |
+
with open(filepath, "r", encoding="utf8") as ipt:
|
198 |
+
for cur in map(json.loads, ipt):
|
199 |
+
cur["example_id"] = str(cur["example_id"])
|
200 |
+
for key in ["answers", "queries"]:
|
201 |
+
cur[key] = {k: v for k, v in cur[key].items() if k in ([lang] if lang else self._SOURCE_LANGUAGES)}
|
202 |
+
datas.append(cur)
|
203 |
+
|
204 |
+
if self.config.schema == "source":
|
205 |
+
for cur in datas:
|
206 |
+
for anslist in cur["answers"].values():
|
207 |
+
for ans in anslist:
|
208 |
+
ans.setdefault("entity", "")
|
209 |
+
ans.setdefault("aliases", [])
|
210 |
+
yield int(cur["example_id"]), cur
|
211 |
+
|
212 |
+
elif self.config.schema == "seacrowd_qa":
|
213 |
+
for cur in datas:
|
214 |
+
for cur_lang in [lang] if lang else map(lambda k: self._LANG_3TO2.get(k, k), _LANGUAGES):
|
215 |
+
ret = {
|
216 |
+
"id": f'{cur["example_id"]}_{cur_lang}',
|
217 |
+
"question_id": cur["example_id"],
|
218 |
+
"document_id": "",
|
219 |
+
"question": cur["queries"][cur_lang],
|
220 |
+
"type": "open_domain",
|
221 |
+
"choices": [],
|
222 |
+
"context": "",
|
223 |
+
"answer": [ans.get("text", None) for ans in cur["answers"][cur_lang]],
|
224 |
+
"meta": {f"answer_{k}": [ans.get(k, None) for ans in cur["answers"][cur_lang]] for k in ["entity", "aliases", "type"]},
|
225 |
+
}
|
226 |
+
ret["meta"]["answer_aliases"] = list(map(lambda a: [] if a is None else a, ret["meta"]["answer_aliases"]))
|
227 |
+
yield ret["id"], ret
|