holylovenia
commited on
Commit
•
c625ad3
1
Parent(s):
49fa529
Upload mlqa.py with huggingface_hub
Browse files
mlqa.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from typing import Dict, List, Tuple
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
from seacrowd.utils import schemas
|
9 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
10 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
11 |
+
|
12 |
+
_CITATION = r"""\
|
13 |
+
@article{lewis2019mlqa,
|
14 |
+
author={Lewis, Patrick and O\{g}uz, Barlas and Rinott, Ruty and Riedel, Sebastian and Schwenk, Holger},
|
15 |
+
title={MLQA: Evaluating Cross-lingual Extractive Question Answering},
|
16 |
+
journal={arXiv preprint arXiv:1910.07475},
|
17 |
+
year={2019}
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
_DATASETNAME = "mlqa"
|
22 |
+
|
23 |
+
_DESCRIPTION = """\
|
24 |
+
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
|
25 |
+
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
|
26 |
+
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
|
27 |
+
4 different languages on average.
|
28 |
+
"""
|
29 |
+
|
30 |
+
_HOMEPAGE = "https://github.com/facebookresearch/MLQA"
|
31 |
+
_LICENSE = Licenses.CC_BY_SA_3_0.value
|
32 |
+
_LANGUAGES = ["vie"]
|
33 |
+
_URL = "https://dl.fbaipublicfiles.com/MLQA/"
|
34 |
+
_DEV_TEST_URL = "MLQA_V1.zip"
|
35 |
+
_TRANSLATE_TEST_URL = "mlqa-translate-test.tar.gz"
|
36 |
+
_TRANSLATE_TRAIN_URL = "mlqa-translate-train.tar.gz"
|
37 |
+
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
|
38 |
+
|
39 |
+
_SOURCE_VERSION = "1.0.0"
|
40 |
+
_SEACROWD_VERSION = "2024.06.20"
|
41 |
+
|
42 |
+
_LOCAL = False
|
43 |
+
|
44 |
+
|
45 |
+
class MLQADataset(datasets.GeneratorBasedBuilder):
|
46 |
+
"""
|
47 |
+
MLQA (MultiLingual Question Answering) is a benchmark dataset for evaluating cross-lingual question answering performance.
|
48 |
+
MLQA consists of over 5K extractive QA instances (12K in English) in SQuAD format in seven languages - English, Arabic,
|
49 |
+
German, Spanish, Hindi, Vietnamese and Simplified Chinese. MLQA is highly parallel, with QA instances parallel between
|
50 |
+
4 different languages on average.
|
51 |
+
"""
|
52 |
+
|
53 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
54 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
55 |
+
|
56 |
+
subsets = [
|
57 |
+
"mlqa-translate-test.vi",
|
58 |
+
"mlqa-translate-train.vi",
|
59 |
+
"mlqa.vi.ar",
|
60 |
+
"mlqa.vi.de",
|
61 |
+
"mlqa.vi.zh",
|
62 |
+
"mlqa.vi.en",
|
63 |
+
"mlqa.vi.es",
|
64 |
+
"mlqa.vi.hi",
|
65 |
+
"mlqa.vi.vi",
|
66 |
+
"mlqa.ar.vi",
|
67 |
+
"mlqa.de.vi",
|
68 |
+
"mlqa.zh.vi",
|
69 |
+
"mlqa.en.vi",
|
70 |
+
"mlqa.es.vi",
|
71 |
+
"mlqa.hi.vi",
|
72 |
+
]
|
73 |
+
|
74 |
+
BUILDER_CONFIGS = [
|
75 |
+
SEACrowdConfig(
|
76 |
+
name="{sub}_source".format(sub=subset),
|
77 |
+
version=datasets.Version(_SOURCE_VERSION),
|
78 |
+
description="{sub} source schema".format(sub=subset),
|
79 |
+
schema="source",
|
80 |
+
subset_id="{sub}".format(sub=subset),
|
81 |
+
)
|
82 |
+
for subset in subsets
|
83 |
+
] + [
|
84 |
+
SEACrowdConfig(
|
85 |
+
name="{sub}_seacrowd_qa".format(sub=subset),
|
86 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
87 |
+
description="{sub} SEACrowd schema".format(sub=subset),
|
88 |
+
schema="seacrowd_qa",
|
89 |
+
subset_id="{sub}".format(sub=subset),
|
90 |
+
)
|
91 |
+
for subset in subsets
|
92 |
+
]
|
93 |
+
|
94 |
+
DEFAULT_CONFIG_NAME = "mlqa.vi.vi_source"
|
95 |
+
|
96 |
+
def _info(self) -> datasets.DatasetInfo:
|
97 |
+
if self.config.schema == "source":
|
98 |
+
features = datasets.Features(
|
99 |
+
{"context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.Features({"answer_start": [datasets.Value("int64")], "text": [datasets.Value("string")]}), "id": datasets.Value("string")}
|
100 |
+
)
|
101 |
+
elif self.config.schema == "seacrowd_qa":
|
102 |
+
features = schemas.qa_features
|
103 |
+
|
104 |
+
return datasets.DatasetInfo(
|
105 |
+
description=_DESCRIPTION,
|
106 |
+
features=features,
|
107 |
+
homepage=_HOMEPAGE,
|
108 |
+
license=_LICENSE,
|
109 |
+
citation=_CITATION,
|
110 |
+
)
|
111 |
+
|
112 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
113 |
+
name_split = self.config.name.split("_")
|
114 |
+
url = ""
|
115 |
+
data_path = ""
|
116 |
+
|
117 |
+
if name_split[0].startswith("mlqa-translate-train"):
|
118 |
+
config_name, lang = name_split[0].split(".")
|
119 |
+
url = _URL + _TRANSLATE_TRAIN_URL
|
120 |
+
data_path = dl_manager.download(url)
|
121 |
+
return [
|
122 |
+
datasets.SplitGenerator(
|
123 |
+
name=datasets.Split.TRAIN,
|
124 |
+
# Whatever you put in gen_kwargs will be passed to _generate_examples
|
125 |
+
gen_kwargs={
|
126 |
+
"filepath": f"{config_name}/{lang}_squad-translate-train-train-v1.1.json",
|
127 |
+
"files": dl_manager.iter_archive(data_path),
|
128 |
+
"split": "train",
|
129 |
+
},
|
130 |
+
),
|
131 |
+
datasets.SplitGenerator(
|
132 |
+
name=datasets.Split.TEST,
|
133 |
+
gen_kwargs={
|
134 |
+
"filepath": f"{config_name}/{lang}_squad-translate-train-dev-v1.1.json",
|
135 |
+
"files": dl_manager.iter_archive(data_path),
|
136 |
+
"split": "test",
|
137 |
+
},
|
138 |
+
),
|
139 |
+
]
|
140 |
+
|
141 |
+
elif name_split[0].startswith("mlqa-translate-test"):
|
142 |
+
config_name, lang = name_split[0].split(".")
|
143 |
+
url = _URL + _TRANSLATE_TEST_URL
|
144 |
+
data_path = dl_manager.download(url)
|
145 |
+
return [
|
146 |
+
datasets.SplitGenerator(
|
147 |
+
name=datasets.Split.TEST,
|
148 |
+
gen_kwargs={
|
149 |
+
"filepath": f"{config_name}/translate-test-context-{lang}-question-{lang}.json",
|
150 |
+
"files": dl_manager.iter_archive(data_path),
|
151 |
+
"split": "test",
|
152 |
+
},
|
153 |
+
),
|
154 |
+
]
|
155 |
+
|
156 |
+
elif name_split[0].startswith("mlqa."):
|
157 |
+
url = _URL + _DEV_TEST_URL
|
158 |
+
data_path = dl_manager.download_and_extract(url)
|
159 |
+
ctx_lang, qst_lang = name_split[0].split(".")[1:]
|
160 |
+
return [
|
161 |
+
datasets.SplitGenerator(
|
162 |
+
name=datasets.Split.VALIDATION,
|
163 |
+
gen_kwargs={
|
164 |
+
"filepath": os.path.join(
|
165 |
+
os.path.join(data_path, "MLQA_V1/dev"),
|
166 |
+
f"dev-context-{ctx_lang}-question-{qst_lang}.json",
|
167 |
+
),
|
168 |
+
"split": "dev",
|
169 |
+
},
|
170 |
+
),
|
171 |
+
datasets.SplitGenerator(
|
172 |
+
name=datasets.Split.TEST,
|
173 |
+
gen_kwargs={
|
174 |
+
"filepath": os.path.join(
|
175 |
+
os.path.join(data_path, "MLQA_V1/test"),
|
176 |
+
f"test-context-{ctx_lang}-question-{qst_lang}.json",
|
177 |
+
),
|
178 |
+
"split": "test",
|
179 |
+
},
|
180 |
+
),
|
181 |
+
]
|
182 |
+
elif name_split[0] == "mlqa":
|
183 |
+
url = _URL + _DEV_TEST_URL
|
184 |
+
data_path = dl_manager.download_and_extract(url)
|
185 |
+
ctx_lang = qst_lang = "vi"
|
186 |
+
return [
|
187 |
+
datasets.SplitGenerator(
|
188 |
+
name=datasets.Split.VALIDATION,
|
189 |
+
gen_kwargs={
|
190 |
+
"filepath": os.path.join(
|
191 |
+
os.path.join(data_path, "MLQA_V1/dev"),
|
192 |
+
f"dev-context-{ctx_lang}-question-{qst_lang}.json",
|
193 |
+
),
|
194 |
+
"split": "dev",
|
195 |
+
},
|
196 |
+
),
|
197 |
+
datasets.SplitGenerator(
|
198 |
+
name=datasets.Split.TEST,
|
199 |
+
gen_kwargs={
|
200 |
+
"filepath": os.path.join(
|
201 |
+
os.path.join(data_path, "MLQA_V1/test"),
|
202 |
+
f"test-context-{ctx_lang}-question-{qst_lang}.json",
|
203 |
+
),
|
204 |
+
"split": "test",
|
205 |
+
},
|
206 |
+
),
|
207 |
+
]
|
208 |
+
|
209 |
+
def _generate_examples(self, filepath: Path, split: str, files=None) -> Tuple[int, Dict]:
|
210 |
+
is_config_ok = True
|
211 |
+
if self.config.name.startswith("mlqa-translate"):
|
212 |
+
for path, f in files:
|
213 |
+
if path == filepath:
|
214 |
+
data = json.loads(f.read().decode("utf-8"))
|
215 |
+
break
|
216 |
+
|
217 |
+
elif self.config.schema == "source" or self.config.schema == "seacrowd_qa":
|
218 |
+
with open(filepath, encoding="utf-8") as f:
|
219 |
+
data = json.load(f)
|
220 |
+
else:
|
221 |
+
is_config_ok = False
|
222 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
223 |
+
|
224 |
+
if is_config_ok:
|
225 |
+
count = 0
|
226 |
+
for examples in data["data"]:
|
227 |
+
for example in examples["paragraphs"]:
|
228 |
+
context = example["context"]
|
229 |
+
for qa in example["qas"]:
|
230 |
+
question = qa["question"]
|
231 |
+
id_ = qa["id"]
|
232 |
+
answers = qa["answers"]
|
233 |
+
answers_start = [answer["answer_start"] for answer in answers]
|
234 |
+
answers_text = [answer["text"] for answer in answers]
|
235 |
+
|
236 |
+
if self.config.schema == "source":
|
237 |
+
yield count, {
|
238 |
+
"context": context,
|
239 |
+
"question": question,
|
240 |
+
"answers": {"answer_start": answers_start, "text": answers_text},
|
241 |
+
"id": id_,
|
242 |
+
}
|
243 |
+
count += 1
|
244 |
+
|
245 |
+
elif self.config.schema == "seacrowd_qa":
|
246 |
+
yield count, {"question_id": id_, "context": context, "question": question, "answer": {"answer_start": answers_start[0], "text": answers_text[0]}, "id": id_, "choices": [], "type": "extractive", "document_id": count, "meta":{}}
|
247 |
+
count += 1
|